Analisis Sentimen Penerapan Deep Learning dan Analisis Sentimen terhadap Gap Kompetensi Lulusan Lembaga Pendidikan dan Pelatihan Vokasi terhadap Dunia Kerja dengan Metode Long Short-Term Memory (LSTM)
Abstract
The gap between vocational graduates’ competencies and labor market demands remains a pressing issue in Indonesia. This study aims to analyze alumni perceptions regarding the alignment between competencies acquired during their studies at LP3I Banda Aceh and real-world job requirements. A quantitative approach was adopted using a deep learning method based on Long Short-Term Memory (LSTM). Data were collected through an online survey containing open-ended responses from 934 alumni, followed by preprocessing, tokenization, lexicon-based sentiment labeling, and data splitting into training and testing sets. The models developed included pure LSTM, LSTM with class weights, and Bidirectional LSTM (BiLSTM). Results indicate that BiLSTM achieved the highest performance with 90% accuracy and a weighted F1-score of 0.91. Additionally, 44.5% of respondents expressed neutral or negative sentiments, highlighting a mismatch between acquired competencies and industry demands. These findings underscore the urgency of curriculum evaluation and stronger collaboration between vocational institutions and the labor market. This study demonstrates that deep learning offers an efficient and objective tool for competency mapping in vocational education.
References
DAFTAR PUSTAKA
Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.
S. Mutmatimah, Khairunnas, and Khairunnisa, “Metode Deep Learning LSTM dalam Analisis Sentimen Aplikasi PeduliLindungi,” J. Comput. Sci. Informatics, vol. 1, no. 1, pp. 9–19, 2024, doi: 10.34304/scientific.v1i1.231.
L. G. Astuti, P. S. Informatika, and U. Udayana, “Implementasi LSTM pada Analisis Sentimen Review Film,” J. Elektron. Ilmu Komput. Udayana, vol. 10, no. 4, pp. 351–362, 2022.
A. A. Mudding and Arifin A Abd Karim, “Analisis Sentimen Menggunakan Algoritma Lstm Pada Media Sosial,” J. Publ. Ilmu Komput. dan Multimed., vol. 1, no. 3, pp. 181–187, 2022, doi: 10.55606/jupikom.v1i3.517.
A. Rolangon, A. Weku, and G. A. Sandag, “Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19,” TeIKa, vol. 13, no. 01, pp. 31–40, 2023, doi: 10.36342/teika.v13i01.3063.
A. R. Isnain, H. Sulistiani, B. M. Hurohman, A. Nurkholis, and S. Styawati, “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” J. Edukasi dan Penelit. Inform., vol. 8, no. 2, p. 299, 2022, doi: 10.26418/jp.v8i2.54704.
M. F. Naufal and S. F. Kusuma, “Analisis Sentimen pada Media Sosial Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Kegiatan Masyarakat Berbasis Deep Learning,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, p. 44, 2022, doi: 10.26418/jp.v8i1.49951.
S. Aripiyanto, T. Tukino, A. Sufyan, and R. Nandaputra, “Sentimen Analisis Twitter Ibu Kota Negara Nusantara Menggunakan Long Short-Term Memory dan Lexicon Based,” Expert J. Manaj. Sist. Inf. dan Teknol., vol. 12, no. 2, p. 119, 2022, doi: 10.36448/expert.v12i2.2821.
Y. N. AS, D. I. Mulyana, and Y. Akbar, “Klasifikasi Rumput Liar Menggunakan Deep Learning Dengan Dense Convolutional Neural Network,” Progresif J. Ilm. …, pp. 347–358, 2023, [Online]. Available: http://ojs.stmik-banjarbaru.ac.id/index.php/progresif/article/view/1166%0Ahttp://ojs.stmik-banjarbaru.ac.id/index.php/progresif/article/download/1166/675
D. R. Alghifari, M. Edi, and L. Firmansyah, “Implementasi Bidirectional LSTM untuk Analisis Sentimen Terhadap Layanan Grab Indonesia,” J. Manaj. Inform., vol. 12, no. 2, pp. 89–99, 2022, doi: 10.34010/jamika.v12i2.7764.
S. Nurmani, A. Darmawahyuni, A. I. Sapitri, M. N. Rachmatullah, Firdaus, and B. Tutuko, “Pengenalan Deep Learning dan Implementasinya,” p. 137, 2021.
F. Fitroh and F. Hudaya, “Systematic Literature Review: Analisis Sentimen Berbasis Deep Learning,” J. Nas. Teknol. dan Sist. Inf., vol. 9, no. 2, pp. 132–140, 2023, doi: 10.25077/teknosi.v9i2.2023.132-140.
B. Raharjo, Deep Learning dengan Python. 2022.
S. S. Roy, A. I. Awad, L. A. Amare, M. T. Erkihun, and M. Anas, “Multimodel Phishing URL Detection Using LSTM, Bidirectional LSTM, and GRU Models,” Futur. Internet, vol. 14, no. 11, 2022, doi: 10.3390/fi14110340.
A. Santosa, I. Purnamasari, and Mayasari Rini, “Pengaruh Stopword Removal dan StemmingTerhadap Performa Klasifikasi Teks KomentarKebijakan New Normal Menggunakan AlgoritmaLSTM,” J. Sains Komput. Inform., vol. 6, pp. 81–93, 2022.
K. Alahmadi, S. Alharbi, J. Chen, and X. Wang, “Generalizing sentiment analysis: a review of progress, challenges, and emerging directions,” Soc. Netw. Anal. Min., vol. 15, no. 1, 2025, doi: 10.1007/s13278-025-01461-8.
I. T. Julianto, “Analisis Sentimen Terhadap Sistem Informasi Akademik Institut Teknologi Garut,” J. Algoritm., vol. 19, no. 1, pp. 449–456, 2022, doi: 10.33364/algoritma/v.19-1.1112.
R. Refianti, A. B. Mutiara, and R. A. Putra, “A Lexicon-Based Long Short-Term Memory (LSTM) Model for Sentiment Analysis to Classify Halodoc Application Reviews on Google Playstore,” J. Appl. Data Sci., vol. 5, no. 1, pp. 146–157, 2024, doi: 10.47738/jads.v5i1.160.
R. Sood, “Sentiment analysis using LSTM models | NLP,” no. 12, pp. 2654–2660, 2024.
A. P. Wibawa, D. E. Cahyani, D. D. Prasetya, L. Gumilar, and A. Nafalski, “Detecting emotions using a combination of bidirectional encoder representations from transformers embedding and bidirectional long short-term memory,” Int. J. Electr. Comput. Eng., vol. 13, no. 6, pp. 7137–7146, 2023, doi: 10.11591/ijece.v13i6.pp7137-7146.
Copyright (c) 2025 Susilawati Yahya, Zulham Sitorus, Muhammad Iqbal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


