Analisis Sentimen Analisis Sentimen Publik Terhadap Pariwisata Aceh di Media Sosial X Menggunakan Algoritma Naive Bayes Classifier
-
Abstract
Aceh has been synonymous with negative perceptions among people outside the province. This is due to the prolonged armed conflict and the devastating tsunami in 2004. Despite these challenges, Aceh possesses abundant potential for tourism, including natural attractions, historical sites, cultural arts, and religious tourism. However, negative perceptions continue to influence tourists' decisions to visit Aceh. Therefore, this study aims to analyze public sentiment or public opinion towards Aceh's tourism using the Naive Bayes algorithm on the X (Twitter) social media platform. Data for this study was collected from tweets on X (Twitter) using the keyword "Aceh tourism" and then underwent several data pre-processing stages to improve data quality, including text cleaning, case folding, word normalization, tokenization, stop word removal, and stemming. Afterward, the Naive Bayes algorithm was applied to classify tweet sentiment into positive and negative categories. Model evaluation was conducted using a confusion matrix, accuracy, and classification report. The results showed that Naive Bayes performed well in classifying public sentiment with an accuracy of 81%. This analysis indicates that public perception towards Aceh's tourism has begun to shift positively, presenting a promising opportunity for the future development of Aceh's tourism sector.
References
Asgha, A. Y., & Novita, S. (2023), Konsep Pengembangan Kawasan Pariwisata sebagai Upaya Meningkatakan Promosi Pariwisata di Provinsi Aceh. ArtComm : Jurnal Komunikasi Dan Desain, 6(1), 1–8. https://doi.org/10.37278/artcomm.v6i1.612
Herizal, H., Rassanjani, S., & Muhkrijal, M. (2021). Kebijakan Kepariwisataan di Provinsi Aceh: Peluang dan Tantangan. Jurnal Public Policy, 7(1), 21. https://doi.org/10.35308/jpp.v7i1.3341.
Hayuningtyas, R. Y., & Sari, R. (2019). ANALISIS SENTIMEN OPINI PUBLIK BAHASA INDONESIA TERHADAP WISATA TMII MENGGUNAKAN NAÏVE BAYES DAN PSO. Jurnal Techno Nusa Mandiri, 16(1), 37–42. https://doi.org/10.33480/techno.v16i1.115
Fatimah, S., Purwanto, E., & Permatasari, H. (2023). Analisis Sentimen Twitter Tentang Wisata di Kota Solo. Techno.Com, 22(4), 854–869. https://doi.org/10.33633/tc.v22i4.9154.
Ahmad Adita Shiddiq, Aris Wahyu Murdiyanto, & Arif Himawan. (2023). Analisis Sentimen Transfer Pemain Klub La Liga Spanyol Pada Bursa Transfer Musim Dingin Eropa Di Twitter. INDONESIAN JOURNAL ON DATA SCIENCE, 1(1), 1–19. https://doi.org/10.30989/ijds.v1i1.859.
Sari, F. V., & Wibowo, A. (2019). Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi. Jurnal SIMETRIS, 10(2), 681–686.
Ahmad, S., Ridwan, A. M., & Setyawan, G. D. (2023). ANALISIS SENTIMEN PRODUCT TOOLS & HOME MENGGUNAKAN METODE CNN DAN LSTM. TEKNOKOM, 6(2), 133–140. https://doi.org/10.31943/teknokom.v6i2.154
Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358.
Mailoa, F. F. (2021). Analisis sentimen data twitter menggunakan metode text mining tentang masalah obesitas di indonesia. Journal of Information Systems for Public Health, 6(1), 44. https://doi.org/10.22146/jisph.44455
Afdal, M., & Elita, L. R. (2022). PENERAPAN TEXT MINING PADA APLIKASI TOKOPEDIA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 8(1), 78. https://doi.org/10.24014/rmsi.v8i1.16595
Surapati, U., & Zulkarnain, A. Y. (2023). Implementasi Metode Naïve Bayes Untuk Mendeteksi Hate Speech Pada Twitter. INTECOMS: Journal of Information Technology and Computer Science, 6(2), 830–837. https://doi.org/10.31539/intecoms.v6i2.7678
Rendy Rian Chrisna Putra, Eza Budi Perkasa, Tri Sugihartono, Ahmad Pakih Alkayess, Irsad Dwi Sandro, & Royhan Indallah. (2023). Komparasi Naive Bayess dengan Support Vector Machine dalam Analisis Sentimen Aplikasi MyPertamina. SATIN - Sains Dan Teknologi Informasi, 9(2), 90–99. https://doi.org/10.33372/stn.v9i2.1042
Aryanti, P. G., & Santoso, I. (2023). Analisis Sentimen Pada Twitter Terhadap Mobil Listrik Menggunakan Algoritma Naive Bayes. IKRA-ITH Informatika : Jurnal Komputer Dan Informatika, 7(2), 133–137. Retrieved from https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/2821
Shevira, S., Suarjaya, I. M. A. D., & Buana, P. W. (2022). Pengaruh Kombinasi dan Urutan Pre-Processing pada Tweets Bahasa Indonesia. JITTER : Jurnal Ilmiah Teknologi Dan Komputer, 3(2), 1074. https://doi.org/10.24843/jtrti.2022.v03.i02.p06
Wiwik Sri Rahayu Ginantra, N. L., Arifah, F. N., Wijaya, A. H., Septarini, R. S., Dewa, N. A., Yudhi Ardiana, P., Effendy, F., Hazriani, A. I., Sari, I. Y., Gustiana, Z., Prianto, C., Gustian, D., & Negara, E. S. (2021). Data Mining dan Penerapan Algoritma. Yayasan Kita Menulis.
Hanafiah, A., Nasution, A. H., Arta, Y., Wandri, R., Nasution, H. O., & Mardafora, J. (2023). Sentimen Analisis Terhadap Customer Review Produk Shopee Berbasis Wordcloud Dengan Algoritma Naïve Bayes Classifier. INTECOMS: Journal of Information Technology and Computer Science, 6(1), 230–236. https://doi.org/10.31539/intecoms.v6i1.5845
Prayuda, M. W., & Permana, A. A. (2022). Penerapan Metode Lexicon Based untuk Menganalisis Sentimen Terhadap Mudik Lebaran. Jurnal Minfo Polgan, 11(2), 137–143. Retrieved from https://doi.org/10.33395/jmp.v11i2.12348
Krisdiyanto, T. (2021). Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 7(1), 32. https://doi.org/10.24014/coreit.v7i1.12945
Copyright (c) 2024 Susilawati Yahya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


