Implementasi Sistem Pendukung Keputusan dalam menentukan Kecamatan Terbaik Menggunakan Algoritma Entropy dan Additive Ratio Assessment (ARAS)
Abstract
In the context of regional development and decision making related to determining the best village, the use of a Decision Support System (DSS) with the application of the Entropy and Additive Ratio Assessment (ARAS) algorithms is a very important approach. The main objective of this research is to propose and implement a method that utilizes the Entropy algorithm to evaluate criteria weights and ARAS to rank villages based on predetermined criteria. This approach begins the process by identifying relevant criteria to determine the best village in an area. Next, the Entropy algorithm is used to measure the level of importance or relative weight of each predetermined criterion. This step helps in assessing how informative each criterion is in the decision-making process regarding determining the best Village.
After determining the criteria weights using Entropy, the approach continues with the application of the ARAS method. ARAS is used to rank villages based on normalized values from previously determined criteria. The data normalization process is carried out to ensure the validity of comparisons between villages. The final result of this approach is a ranking of villages indicating the best villages based on the criteria considered. This method was tested in a case study using a dataset involving a number of relevant criteria for assessing village development potential. Experimental results show that the use of the Entropy and ARAS algorithms in the Decision Support System provides an effective and informative framework for decision makers in determining the best Village. In conclusion, this approach provides a solid foundation to support a more effective and precise decision-making process in regional development based on clearly defined criteria.
References
Labuhanbatu, “Profil Kab.Labuhanbatu,” 2018. https://labuhanbatukab.go.id/index.php/profil.
I. R. Pratiwi, A. S. Sitio, and A. Sindar, “Pemilihan Kecamatan Terbaik Di Kecamatan Pagar Merbau Menggunakan Metode Ahp,” vol. 1, no. November, pp. 59–65, 2018.
A. Ernawati, “Penerapan Algoritma Entropy Dan Aras Menentukan Penerima Beasiswa Mahasiswa Berprestasi Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 2, pp. 74–84, 2022.
S. R. Tanjung and M. V Siagian, “Penerapan Metode COPRAS dan ENTROPY dalam Pemilihan Anggota Badan Pengawas Pemilihan Umum ( BAWASLU ),” vol. 1, no. 2, pp. 48–59, 2021.
R. Sanjaya, “Sistem Pengambilan Keputusan Untuk Menentukan Perumahan Terbaik Berdasarkan Kondisi dan Lokasi Menggunakan Metode ENTROPHY dan ARAS,” Semin. Nas. Teknol. Komput. Sains SAINTEKS 2020, pp. 447–452, 2020.
R. T. Aldisa, F. Teknologi, and U. Nasional, “Analisis Perbandingan Metode ROC-WASPAS dan Entropy-WASPAS dalam Keputusan Pemberian Reward Kinerja Pegawai Hotel,” vol. 4, no. 3, pp. 1212–1223, 2022, doi: 10.47065/bits.v4i3.2562.
M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.
H. Syahputra, M. Syahrizal, S. Suginam, S. D. Nasution, and B. Purba, “SPK Pemilihan Konten Youtube Layak Tonton Untuk Anak-Anak Menerapkan Metode Additive Ratio Assessment (ARAS),” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 678–685, 2019, [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks/article/view/215/210.
S. Alex Rizky Saputra, “Implementasi Algoritma ARAS Pada SPK untuk Menentukan Peringkat Dosen Terbaik,” Indones. J. Comput. Sci., vol. 11, no. 1, pp. 578–591, 2022.
A. B. Ginting, “Implementasi Metode Additive Ratio Assessment ( ARAS ) Dalam Menentukan Perusahaan Penyalur Tenaga Kerja Terbaik,” vol. 9, pp. 174–182, 2021.
A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.
J. Teknologi and U. Mulawarman, “Penerapan Algoritma ID3 Decision Tree Pada Penentuan Penerima Program Bantuan Pemerintah Daerah di Kabupaten Kutai Kartanegara,” vol. 2, no. 2, 2018.
I. Sasmita, R. Novita, N. E. Rozanda, M. L. Hamzah, and S. Informasi, “Literature Review : Trend Penerapan MCDM Metode ELECTRE , EDAS dan ARAS,” vol. 7, no. 1, pp. 24–32, 2021.
S. Sahara, “Penerapan Metode Support Vector Machine (SVM) Guna Menentukan Tingkat Lulus Mahasiswa E-Learning.” [Online]. Available: www.kemendiknas.go.id
A. Pratama, R. C. Wihandika, and D. E. Ratnawati, “Implementasi algoritme support vector machine (SVM) untuk prediksi ketepatan waktu kelulusan mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. April, pp. 1704–1708, 2018.
A. Perdana and M. T. Furqon, “Penerapan Algoritma Support Vector Machine ( SVM ) Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia ( Studi Kasus : RSJ . Radjiman Wediodiningrat , Lawang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 3162–3167, 2018.
“DATA MINING : PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE ( DBD ) BERDASARKAN PROVINSI,” vol. 3, no. 2, pp. 173–178, 2018.
D. H. Kamagi and S. Hansun, “Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan Mahasiswa,” J. Ultim., vol. 6, no. 1, pp. 15–20, 2014, doi: 10.31937/ti.v6i1.327.
S. Syarli and A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” J. Ilm. Ilmu Komput., vol. 2, no. 1, pp. 22–26, 2016.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma SVM,” Jdmsi, vol. 2, no. 1, pp. 31–37, 2021, [Online]. Available: https://t.co/NfhnfMjtXw
R. Ramlawati, A. Anwar, and R. M. Thaha, “Model Estimasi Kejadian Diare Di Kota Makassar (Estimated Models of Occurrence Diarrhea in Makassar),” J. Kesehat. Masy. Marit., vol. 1, no. 1, pp. 73–78, 2019.
P. A. Octaviani, Yuciana Wilandari, and D. Ispriyanti, “Penerapan Metode Klasifikasi Support Vector Machine (SVM) pada Data Akreditasi Sekolah Dasar (SD) di Kabupaten Magelang,” J. Gaussian, vol. 3, no. 8, pp. 811–820, 2014, [Online]. Available: http://download.portalgaruda.org/article.php?article=286497&val=4706&title=PENERAPAN METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) PADA DATA AKREDITASI SEKOLAH DASAR (SD) DI KABUPATEN MAGELANG
Copyright (c) 2023 Andi Ernawati, Ayu Ofta Sari, Siti Nurhaliza Sofyan, Ananda Aulia, Zulham Sitorus, Khairul

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).