Analysis Of Item-Based Collaborative Filtering For Sales Of Processed Oil Palm Products
Abstract
Abstract- The sales system for processed palm oil necessitates a recommendation system that offers product suggestions to users, facilitating their selection of sales items for processed palm oil products. This study used the Item-Based Collaborative Filtering approach, which identifies the similarity between items. The system will assess the rating of each item and compute the similarity value utilising the Pearson correlation-based similarity formula. Companies will exhibit greater interest in product sales that possess identical similarity values. This article presents recommendations for system development concerning processed products intended for the sale of technology-based items that employ item-based collaborative filtering methods. It specifies a recommended selling value for processed palm oil products, with a Mean Absolute Error (MAE) of 10.463126965591, derived from the equation 5/1, yielding a final result of -5. The execution of the sales suggestions for processed palm oil products indicates that the items with the highest similarity value calculations are i4 and i5. PT. Sugih Riesta Jaya employs the Item-Based collaborative filtering method to enhance sales of refined palm oil products, thereby facilitating sales assistance and providing the public with sales information and recommendations for essential refined palm oil products..
References
R. Nugroho, A. Polina, and Y. Mahendra, “Tourism Site Recommender System Using Item-Based Collaborative Filtering Approach,” International Journal of Applied Sciences and Smart Technologies, vol. 2, no. 2, pp. 119–126, 2020, doi: 10.24071/ijasst.v2i2.2987.
L. Guo, J. Liang, Y. Zhu, Y. Luo, L. Sun, and X. Zheng, “Collaborative filtering recommendation based on trust and emotion,” Journal of Intelligent Information Systems, vol. 53, no. 1, pp. 113–135, 2019, doi: 10.1007/s10844-018-0517-4.
L. Dzumiroh and R. Saptono, “Penerapan Metode Collaborative Filtering Menggunakan Rating Implisit pada Sistem Perekomendasi Pemilihan Film di Rental VCD,” Jurnal Teknologi & Informasi ITSmart, vol. 1, no. 2, p. 54, 2016, doi: 10.20961/its.v1i2.590.
A. H. Ritdrix and P. W. Wirawan, “Sistem Rekomendasi Buku Menggunakan Metode Item-Based Collaborative Filtering,” Jurnal Masyarakat Informatika, vol. 9, no. 2, pp. 24–32, 2018.
A. Kurniawan, “Sistem Rekomendasi Produk Sepatu Dengan Menggunakan,” Seminar Nasional Teknologi Informasi dan Komunikasi, vol. 2016, no. Sentika, pp. 610–614, 2016.
Y. Siagian, J. Hutahaean, A. Zikra Syah, J. Efendi Hutagalung, and A. Karim, “Implementasi Metode K-Nearest Neigbours (KNN) Untuk Klasifikasi Penyakit Diabetes,” Jurnal Informatika dan Teknologi Informasi, vol. 2, no. 3, pp. 253–262, 2024, doi: 10.56854/jt.v2i3.331.
A. Karim, S. Esabella, S. Suryadi, and E. Mardinata, “Clusterisasi Tingkat Pengangguran Terbuka Menurut Provinsi di Indonesia Menggunakan Algoritma K-Medoids,” vol. 6, no. 3, pp. 1341–1351, 2024, doi: 10.47065/bits.v6i3.6198.
Nahlah, Amiruddin, and A. Rasid, “Perancangan Website E-Commerce Berbasis PHP dan MySQL pada Usaha Ikan Abon Tuna Radia di Kabupaten Barru,” Seminar Nasional Hasil Penelitian, vol. 2, no. 1, pp. 11–16, 2017.
V. L. Jaja, B. Susanto, and L. R. Sasongko, “Penerapan Metode Item-Based Collaborative Filtering Untuk Sistem Rekomendasi Data MovieLens,” d’CARTESIAN, vol. 9, no. 2, p. 78, 2020, doi: 10.35799/dc.9.2.2020.28274.
S. Khairani and A. Yasir, “Penerapan Metode Item-Based Collaborative Filtering Pada E-commerce Sebagai Sistem Rekomendasi Berdasarkan Rating,” in Seminar Nasional, 2018, pp. 6–7.
N. Oktaviani and S. Sauda, “Pemodelan dan Implementasi Aplikasi Mobile Umrah Guide Menggunakan Unified Modeling Language,” Jurnal Sains dan Informatika, vol. 5, no. 2, pp. 177–186, 2019, doi: 10.34128/jsi.v5i2.184.
M. Leben, “Applying Item-based and User-based collaborative filtering on the Netflix data,” Information Retrieval, pp. 1–9, 2008.
A. Karim, S. Esabella, K. Kusmanto, M. Hidayatullah, and S. Suryadi, “Penerapan Data Mining Untuk Pengelompokan Terhadap Kualitas Kinerja Karyawan Dengan Menggunakan Algoritma K-Medoids Clustering,” Jurnal Media Informatika Budidarma, vol. 8, no. 2, p. 1001, 2024, doi: 10.30865/mib.v8i2.7445.
M. Nilashi, K. Bagherifard, O. Ibrahim, H. Alizadeh, L. A. Nojeem, and N. Roozegar, “Collaborative filtering recommender systems,” Research Journal of Applied Sciences, Engineering and Technology, vol. 5, no. 16, pp. 4168–4182, 2013, doi: 10.19026/rjaset.5.4644.
C. S. D. Prasetya, “Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 3, p. 194, 2017, doi: 10.25126/jtiik.201743392.
I. G. A. G. A. Kadyanan, “Perancangan Sistem Rekomendasi dalam Industri Kuliner di Bali,” Jurnal Ilmiah, vol. X, no. 1, pp. 1–6, 2017.
B. T. W. Utomo and A. W. Anggriawan, “Sistem Rekomendasi Paket Wisata Se-Malang Raya Menggunakan Metode Hybrid Content Based Dan Collaborative,” Jurnal Ilmiah Teknologi Informasi Asia, vol. 9, no. 1, pp. 6–13, 2015.
T. H. Hartijah, “Sistem Rekomendasi Kuliner Khas Gresik Menggunakan Metode Item Based Collaborative Filtering,” Universitas Muhammadiyah Gresik, 2019.
S. Yadav, Vikesh, Shreyam, and S. Nagpal, “An Improved Collaborative Filtering Based Recommender System using Bat Algorithm,” Procedia Computer Science, vol. 132, pp. 1795–1803, 2018, doi: 10.1016/j.procs.2018.05.155.
B. Juarto and A. S. Girsang, “Neural Collaborative with Sentence BERT for News Recommender System,” International Journal on Informatics Visualization, vol. 5, no. 4, pp. 448–455, 2021, doi: 10.30630/JOIV.5.4.678.
Copyright (c) 2025 Zulham Sitorus, Meri Sri Wahyuni, Muhammad Iqbal, Siska Rika Uli Samosir

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


