Sentiment Analysis Classification of E-commerce User Reviews Using Natural Language Processing (NLP) and Support Vector Machine (SVM) Methods
Abstract
In the swiftly changing digital age, e-commerce has become a vital component of everyday living. Individuals actively share product reviews, whether favorable or unfavorable, which companies can utilize to grasp users' views on their services. An efficient approach for evaluating and categorizing user sentiments is required to aid in analyzing these reviews. In this scenario, the Support Vector Machine (SVM) and Natural Language Processing (NLP) methods offer the appropriate answer. This research intends to develop a classification model capable of sorting e-commerce user feedback into positive, negative, or neutral sentiments. Utilizing NLP methods to analyze the review text and SVM as the classification approach, this model aims to achieve high accuracy in identifying user sentiment. Words that do not affect sentiment analysis, like "and," "that," "for," are eliminated, and SVM is utilized once the review data is converted into vectors via the TF-IDF method. The labeled sentiment training data will be used to train the SVM model.
References
Alwendi, “Penerapan E-Commerce Dalam Meningkatkan,” Manaj. Bisnis, vol. 17, no. 3, pp. 317–325, 2020, [Online]. Available: http://journal.undiknas.ac.id/index.php/magister-manajemen/
Y. L. . Rehatalanit, “Peran E-Commerce Dalam Pengembangan Bisnis,” J. Teknol. Ind., vol. 5, no. 0, pp. 62–69, 2021, [Online]. Available: https://journal.universitassuryadarma.ac.id/index.php/jti/article/view/764
Selsa Dharma Wulan, “Manfaat dan Tantangan E-Commerce Dalam Ekonomi Digital di Bidang Bisnis,” Pros. Semin. Nas. Ilmu Manaj. Kewirausahaan dan Bisnis, vol. 1, no. 1, pp. 42–50, 2024, doi: 10.61132/prosemnasimkb.v1i1.5.
D. E. B. Jabat, L. L. Tarigan, M. Purba, and M. Purba, “Pemanfaatan Platform E-Commerce Melalui Marketplace,” SKYLANDSEA Prof. J. Ekon. Bisnis dan Teknol., vol. 2, no. 2, pp. 16–21, 2022, [Online]. Available: https://jurnal.yappsu.org/index.php/skylandsea/article/view/85
S. K. Kim and M. Park, “Effectiveness of person-centered care on people with dementia: A systematic review and meta-analysis,” Clin. Interv. Aging, vol. 12, pp. 381–397, 2017, doi: 10.2147/CIA.S117637.
D. F. Anisa and A. E. Yulianto, “Pengaruh Brand Image, Promotion, Dan Online Customer Review Terhadap Keputusan Pembelian Produk Mie Gacoan Cabang Manyar Di Platform Shopeefood,” J. Ilmu dan Ris. Manaj., vol. 13, no. 2, pp. 1–16, 2024.
H. Kurniawan, M. A. Miftakhurahmat, and U. Enri, “Analisis Sentimen pada Ekspedisi Kurir Online di Indonesia Menggunakan Algoritma Naive Bayes,” VISA J. Vis. Ideas, vol. 4, no. 3, pp. 1002–1012, 2024, doi: 10.47467/visa.v4i3.5140.
Z. Sitorus, A. Marsya, D. Ramatika, and R. S. Siburian, “Analysis of Online Shopping Addiction Level Using the K-nearest Neighbor Algorithm at SMK Negeri 1 Tanjung Pura,” J. Inf. Technol. Comput. Sci. Electr. Eng., vol. 1, no. 2, pp. 134–138, 2024, doi: 10.61306/jitcse.v1i2.
M. Angawi and Z. Tasir, “Blended Learning Research: A Systematic Review and Identification of Future Research Gaps,” Int. J. Acad. Res. Progress. Educ. Dev., vol. 13, no. 3, pp. 2993–3017, 2024, doi: 10.6007/ijarped/v13-i3/22216.
Z. A. W. Sugandi and S. Sarmini, “Implementasi Metode Support Vector Machine (SVM) Pada Sistem Rekomendasi Produk Perawatan Wajah Berbasis Web,” J. Sist. dan Teknol. Inf., vol. 12, no. 3, p. 388, 2024, doi: 10.26418/justin.v12i3.74905.
N. Mardiah, L. Marlina, K. Khairul, Z. Sitorus, and M. Iqbal, “Analysis Of Indonesian People’s Sentiment Towards 2024 Presidential Candidates On Social Media Using Naïve Bayes Classifier and Support Vector Machine,” Build. Informatics, Technol. Sci., vol. 6, no. 2, pp. 950–960, 2024, doi: 10.47065/bits.v6i2.5766.
Z. Sitorus, M. Saputra, S. N. Sofyan, and Susilawati, “Sentiment Analysis of Indonesian Community Towards Electric Motorcycles on Twitter Using Orange Data Mining,” INFOTECH J., vol. 10, no. 1, pp. 108–113, 2024, doi: 10.31949/infotech.v10i1.9374.
M. Baha’uddin and Z. Fatah, “Penerapan Data Mining Clustering K-Means Dalam Mengelompokkan Data Penduduk Penyandang Disabilitas,” Gudang J. Multidisiplin Ilmu, vol. 2, no. 10, pp. 86–94, 2024, [Online]. Available: https://gudangjurnal.com/index.php/gjmi
A. Wahyu Istalama Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.
K. Z. Mahmoud, B. S. Obeidat, and M. A. Ishmais, “Roasted sesame hulls improve broiler performance without affecting carcass characteristics,” Ital. J. Anim. Sci., vol. 14, no. 3, pp. 495–501, 2015, doi: 10.4081/ijas.2015.3957.
H. Abijono, P. Santoso, and N. L. Anggreini, “Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data,” J. Teknol. Terap. G-Tech, vol. 4, no. 2, pp. 315–318, 2021, doi: 10.33379/gtech.v4i2.635.
A. Rifa’i, H. Sujaini, and D. Prawira, “Sentiment Analysis Objek Wisata Kalimantan Barat Pada Google Maps Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 400, 2021, doi: 10.26418/jp.v7i3.48132.
M. K. Anam, T. A. Fitri, A. Agustin, L. Lusiana, M. B. Firdaus, and A. T. Nurhuda, “Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm,” Ilk. J. Ilm., vol. 15, no. 2, pp. 290–302, 2023, doi: 10.33096/ilkom.v15i2.1590.290-302.
D. Hidayat and R. Heryatno, “Kajian Pustaka Penelitian Perilaku Pengguna e-Wallet di Indonesia,” Manaj. Bus. Innov. Conf., vol. 7, no. Upadhayaya 2012, pp. 80–89, 2024, [Online]. Available: https://jurnal.untan.ac.id/index.php/MBIC/index
Copyright (c) 2025 Jimmy Iqbal Wiranata Siregar, Andysha Putra Utama Siahaan, Muhammad Iqbal, Darmeli Nasution, Rian Farta Wijaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


