Sentiment Analysis Classification of E-commerce User Reviews Using Natural Language Processing (NLP) and Support Vector Machine (SVM) Methods

  • Jimmy Iqbal Wiranata Siregar Universitas Pembangunan Panca Budi, Indonesia
  • Andysah Putera Utama Siahaan Universitas Pembangunan Panca Budi, Indonesia
  • Muhammad Iqbal Universitas Pembangunan Panca Budi, Indonesia
  • Darmeli Nasution Universitas Pembangunan Panca Budi, Indonesia
  • Rian Farta Wijaya Universitas Pembangunan Panca Budi, Indonesia
Keywords: E-Commerce, Natural Language Processing (NLP), Support Vector Machine (SVM).

Abstract

In the swiftly changing digital age, e-commerce has become a vital component of everyday living. Individuals actively share product reviews, whether favorable or unfavorable, which companies can utilize to grasp users' views on their services. An efficient approach for evaluating and categorizing user sentiments is required to aid in analyzing these reviews. In this scenario, the Support Vector Machine (SVM) and Natural Language Processing (NLP) methods offer the appropriate answer. This research intends to develop a classification model capable of sorting e-commerce user feedback into positive, negative, or neutral sentiments. Utilizing NLP methods to analyze the review text and SVM as the classification approach, this model aims to achieve high accuracy in identifying user sentiment. Words that do not affect sentiment analysis, like "and," "that," "for," are eliminated, and SVM is utilized once the review data is converted into vectors via the TF-IDF method. The labeled sentiment training data will be used to train the SVM model.

References

Alwendi, “Penerapan E-Commerce Dalam Meningkatkan,” Manaj. Bisnis, vol. 17, no. 3, pp. 317–325, 2020, [Online]. Available: http://journal.undiknas.ac.id/index.php/magister-manajemen/

Y. L. . Rehatalanit, “Peran E-Commerce Dalam Pengembangan Bisnis,” J. Teknol. Ind., vol. 5, no. 0, pp. 62–69, 2021, [Online]. Available: https://journal.universitassuryadarma.ac.id/index.php/jti/article/view/764

Selsa Dharma Wulan, “Manfaat dan Tantangan E-Commerce Dalam Ekonomi Digital di Bidang Bisnis,” Pros. Semin. Nas. Ilmu Manaj. Kewirausahaan dan Bisnis, vol. 1, no. 1, pp. 42–50, 2024, doi: 10.61132/prosemnasimkb.v1i1.5.

D. E. B. Jabat, L. L. Tarigan, M. Purba, and M. Purba, “Pemanfaatan Platform E-Commerce Melalui Marketplace,” SKYLANDSEA Prof. J. Ekon. Bisnis dan Teknol., vol. 2, no. 2, pp. 16–21, 2022, [Online]. Available: https://jurnal.yappsu.org/index.php/skylandsea/article/view/85

S. K. Kim and M. Park, “Effectiveness of person-centered care on people with dementia: A systematic review and meta-analysis,” Clin. Interv. Aging, vol. 12, pp. 381–397, 2017, doi: 10.2147/CIA.S117637.

D. F. Anisa and A. E. Yulianto, “Pengaruh Brand Image, Promotion, Dan Online Customer Review Terhadap Keputusan Pembelian Produk Mie Gacoan Cabang Manyar Di Platform Shopeefood,” J. Ilmu dan Ris. Manaj., vol. 13, no. 2, pp. 1–16, 2024.

H. Kurniawan, M. A. Miftakhurahmat, and U. Enri, “Analisis Sentimen pada Ekspedisi Kurir Online di Indonesia Menggunakan Algoritma Naive Bayes,” VISA J. Vis. Ideas, vol. 4, no. 3, pp. 1002–1012, 2024, doi: 10.47467/visa.v4i3.5140.

Z. Sitorus, A. Marsya, D. Ramatika, and R. S. Siburian, “Analysis of Online Shopping Addiction Level Using the K-nearest Neighbor Algorithm at SMK Negeri 1 Tanjung Pura,” J. Inf. Technol. Comput. Sci. Electr. Eng., vol. 1, no. 2, pp. 134–138, 2024, doi: 10.61306/jitcse.v1i2.

M. Angawi and Z. Tasir, “Blended Learning Research: A Systematic Review and Identification of Future Research Gaps,” Int. J. Acad. Res. Progress. Educ. Dev., vol. 13, no. 3, pp. 2993–3017, 2024, doi: 10.6007/ijarped/v13-i3/22216.

Z. A. W. Sugandi and S. Sarmini, “Implementasi Metode Support Vector Machine (SVM) Pada Sistem Rekomendasi Produk Perawatan Wajah Berbasis Web,” J. Sist. dan Teknol. Inf., vol. 12, no. 3, p. 388, 2024, doi: 10.26418/justin.v12i3.74905.

N. Mardiah, L. Marlina, K. Khairul, Z. Sitorus, and M. Iqbal, “Analysis Of Indonesian People’s Sentiment Towards 2024 Presidential Candidates On Social Media Using Naïve Bayes Classifier and Support Vector Machine,” Build. Informatics, Technol. Sci., vol. 6, no. 2, pp. 950–960, 2024, doi: 10.47065/bits.v6i2.5766.

Z. Sitorus, M. Saputra, S. N. Sofyan, and Susilawati, “Sentiment Analysis of Indonesian Community Towards Electric Motorcycles on Twitter Using Orange Data Mining,” INFOTECH J., vol. 10, no. 1, pp. 108–113, 2024, doi: 10.31949/infotech.v10i1.9374.

M. Baha’uddin and Z. Fatah, “Penerapan Data Mining Clustering K-Means Dalam Mengelompokkan Data Penduduk Penyandang Disabilitas,” Gudang J. Multidisiplin Ilmu, vol. 2, no. 10, pp. 86–94, 2024, [Online]. Available: https://gudangjurnal.com/index.php/gjmi

A. Wahyu Istalama Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.

K. Z. Mahmoud, B. S. Obeidat, and M. A. Ishmais, “Roasted sesame hulls improve broiler performance without affecting carcass characteristics,” Ital. J. Anim. Sci., vol. 14, no. 3, pp. 495–501, 2015, doi: 10.4081/ijas.2015.3957.

H. Abijono, P. Santoso, and N. L. Anggreini, “Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data,” J. Teknol. Terap. G-Tech, vol. 4, no. 2, pp. 315–318, 2021, doi: 10.33379/gtech.v4i2.635.

A. Rifa’i, H. Sujaini, and D. Prawira, “Sentiment Analysis Objek Wisata Kalimantan Barat Pada Google Maps Menggunakan Metode Naive Bayes,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 400, 2021, doi: 10.26418/jp.v7i3.48132.

M. K. Anam, T. A. Fitri, A. Agustin, L. Lusiana, M. B. Firdaus, and A. T. Nurhuda, “Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm,” Ilk. J. Ilm., vol. 15, no. 2, pp. 290–302, 2023, doi: 10.33096/ilkom.v15i2.1590.290-302.

D. Hidayat and R. Heryatno, “Kajian Pustaka Penelitian Perilaku Pengguna e-Wallet di Indonesia,” Manaj. Bus. Innov. Conf., vol. 7, no. Upadhayaya 2012, pp. 80–89, 2024, [Online]. Available: https://jurnal.untan.ac.id/index.php/MBIC/index

Dimensions Badge
Published
2025-06-30
How to Cite
Iqbal Wiranata Siregar, J., Putera Utama Siahaan, A., Iqbal, M., Nasution, D., & Farta Wijaya, R. (2025). Sentiment Analysis Classification of E-commerce User Reviews Using Natural Language Processing (NLP) and Support Vector Machine (SVM) Methods. Bulletin of Information Technology (BIT), 6(2), 196 - 205. https://doi.org/10.47065/bit.v6i2.2018
Section
Articles