Implementasi Data Mining Dalam Mengelompokkan Tingkat Kepuasan Pemakaian Jasa Cleaning Service Dengan Menggunakan Algoritma K-Means Clustering
Implementasi Data Mining Dalam Mengelompokkan Tingkat Kepuasan Pemakaian Jasa Cleaning Service Dengan Menggunakan Algoritma K-Means Clustering Pada PT. Pinang Jaya Abadi
Abstract
Pinang Jaya Abadi Indonesia is a company providing cleaning services to various sectors, including hospitals, commercial businesses, offices, and shopping centers. However, problems arise when complaints regarding the quality of service provided by its employees occur. To improve service quality and assess customer satisfaction with the offered services, a system capable of accurately and efficiently clustering customer satisfaction data is needed. As a solution, this study applies the K-Means Clustering algorithm in the field of Data Mining to cluster customer satisfaction data regarding the cleaning services provided by PT. Pinang Jaya Abadi Indonesia. The K-Means algorithm was chosen for its ability to cluster data quickly and effectively, and its proven efficiency in various data clustering cases. By using this algorithm, the study aims to produce more structured and informative data clusters, providing a clearer understanding of customer satisfaction levels. The results of this study show that the system designed using the K-Means Clustering algorithm can effectively cluster customer satisfaction data, yielding efficient and accurate results. This system can serve as a tool for PT. Pinang Jaya Abadi Indonesia to enhance service quality and minimize customer complaints by focusing more on clusters with low satisfaction levels.
References
] M. R. Alhapizi, M. Nasir dan I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” Journal of Software Engineering Ampera, pp. 1-14, 2020.
] Pangestu dan T. Ridwan, “Penerapan Data Mining Menggunakan Algoritma Kmeans Pengelompokan Pelanggan Berdasarkan Kubikasi Air Terjual Menggunakan Weka,” Jurnal UMJ, vol. XI, no. 3, pp. 67-71, 2021.
] Saepudin, R. E. Sutisna dan C. Juliane, “Penerapan Algoritma K-Means Clustering Dalam Proses Pengelompokan Kasus Meninggal Dunia Covid-19 Di Indonesia,” Jurnal Teknik Informatika dan Sistem Informasi, vol. X, no. 1, pp. 30-37, 2023.
] A. A. Putri dan S. A. Rahmah, “Implementasi Data Mining Dengan Algoritma K-Means Clustering Untuk Analisis Bisnis Pada Perusahaan Asuransi,” Djtechno : Jurnal Teknologi Informasi, vol. V, no. 1, pp. 139-152, 2024.
] Nugraha, O. Nurdiawan dan G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. VI, no. 2, pp. 849-855, 2022.
] N. S. Nurajizah dan A. Salbinda, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten,” Jurnal Teknik Komputer AMIK BSI, vol. VII, no. 2, pp. 158-163, 2021.
] P. A. Pratiwi, F. Mashalani , M. Hafizhah, A. B. Sabrina, N. H. Harahap dan D. Y. Siregar, “Mengungkap Metode Observasi Yang Efektif Menurut Pra-Pengajar EFL,” Mutiara : Jurnal Penelitian dan Karya Ilmiah, vol. II, no. 1, pp. 133-149, 2024.
] S. Devi, K. Hotimah, R. S. A, A. Karimullah dan M. I. Anshori, “Mewawancarai Kandidat: Strategi untuk Meningkatkan Efisiensi dan Efektivitas,” MASMAN : Master Manajemen, vol. II, no. 2, pp. 66-78, 2022.
] E. Kamti, A. P. Sanjaya dan M. N. Nababan, “Clustering Penjualan Terbaik Dengan Sum of Squares Error Dan Menentukan Nilai K Menggunakan Algoritma K-Means,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. XXIII, no. 2, pp. 387-393, 2024.
] M. R. Palevi dan Z. Indra, “Implementasi Algoritma K-Means Clustering Dengan Pendekatan Active Learning Pada Siswa SMA Untuk Menentukan Jurusan Ke Perguruan Tinggi,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. XXIII, no. 1, pp. 26-36, 2024.
] R. Meng and W. He, “Data Mining,” in Flavoromics, Boca Raton: CRC Press, 2023, pp. 83–122. doi: 10.1201/9781003268758-8.
] D. Yates and M. Z. Islam, “Data Mining on Smartphones: An Introduction and Survey,” ACM Comput Surv, vol. 55, no. 5, 2022, doi: 10.1145/3529753.
] M. J. Hamid Mughal, “Data mining: Web data mining techniques, tools and algorithms: An overview,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 6, 2018, doi: 10.14569/IJACSA.2018.090630.
] S. R. Durugkar, R. Raja, K. K. Nagwanshi, and S. Kumar, “Introduction to data mining,” 2022. doi: 10.1002/9781119792529.ch1.
] M. A. Ibrahim, “Jenis, Klasifikasi dan Karakteristik Media Pembelajaran,” Journal of Economic Perspectives, vol. 2, no. 1, 2022.
] A. P. Wibawa, M. Guntur, A. Purnama, M. Fathony Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, vol. 3, no. 1, 2018.
] M. Wibowo and Muh. R. F. Djafar, “Perbandingan Metode Klasifikasi Untuk Deteksi Stress Pada Mahasiswa di Perguruan Tinggi,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, 2023, doi: 10.30865/mib.v7i1.5182.
] S. Jamil, M. Ur Rahman, and Fawad, “A Comprehensive Survey of Digital Twins and Federated Learning for Industrial Internet of Things (IIoT), Internet of Learning for Industrial Internet of Things (IIoT), Internet of Vehicles (IoV) and Internetofof Drones (IoD),” Applied System Innovation, vol. 5, no. 3, 2022, doi: 10.3390/asi5030056.
] R. L. Kumar, F. Khan, S. Kadry, and S. Rho, “A Survey on blockchain for industrial Internet of Things: Blockchain for Internet of Things,” Alexandria Engineering Journal, vol. 61, no. 8, 2022, doi: 10.1016/j.aej.2021.11.023.
] S. Villamil, C. Hernández, and G. Tarazona, “An overview of internet of things,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 5, 2020, doi: 10.12928/TELKOMNIKA.v18i5.15911.
Copyright (c) 2024 Nadya Septiani Nadya, Sri Wahyuni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).