Implementasi Data Mining Dalam Mengelompokkan Tingkat Kepuasan Pemakaian Jasa Cleaning Service Dengan Menggunakan Algoritma K-Means Clustering

Implementasi Data Mining Dalam Mengelompokkan Tingkat Kepuasan Pemakaian Jasa Cleaning Service Dengan Menggunakan Algoritma K-Means Clustering Pada PT. Pinang Jaya Abadi

  • Nadya Septiani Nadya * Mail Universitas Pembangunan Panca Budi Medan , Indonesia
  • Sri Wahyuni Universitas Pembangunan Panca Budi Medan , Indonesia
Keywords: K-Means Algorithm; Data Mining; Satisfaction Level; Cleaning Service; PT. Pinang Jaya Abadi Indonesia

Abstract

Pinang Jaya Abadi Indonesia is a company providing cleaning services to various sectors, including hospitals, commercial businesses, offices, and shopping centers. However, problems arise when complaints regarding the quality of service provided by its employees occur. To improve service quality and assess customer satisfaction with the offered services, a system capable of accurately and efficiently clustering customer satisfaction data is needed. As a solution, this study applies the K-Means Clustering algorithm in the field of Data Mining to cluster customer satisfaction data regarding the cleaning services provided by PT. Pinang Jaya Abadi Indonesia. The K-Means algorithm was chosen for its ability to cluster data quickly and effectively, and its proven efficiency in various data clustering cases. By using this algorithm, the study aims to produce more structured and informative data clusters, providing a clearer understanding of customer satisfaction levels. The results of this study show that the system designed using the K-Means Clustering algorithm can effectively cluster customer satisfaction data, yielding efficient and accurate results. This system can serve as a tool for PT. Pinang Jaya Abadi Indonesia to enhance service quality and minimize customer complaints by focusing more on clusters with low satisfaction levels.

References

] M. R. Alhapizi, M. Nasir dan I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” Journal of Software Engineering Ampera, pp. 1-14, 2020.

] Pangestu dan T. Ridwan, “Penerapan Data Mining Menggunakan Algoritma Kmeans Pengelompokan Pelanggan Berdasarkan Kubikasi Air Terjual Menggunakan Weka,” Jurnal UMJ, vol. XI, no. 3, pp. 67-71, 2021.

] Saepudin, R. E. Sutisna dan C. Juliane, “Penerapan Algoritma K-Means Clustering Dalam Proses Pengelompokan Kasus Meninggal Dunia Covid-19 Di Indonesia,” Jurnal Teknik Informatika dan Sistem Informasi, vol. X, no. 1, pp. 30-37, 2023.

] A. A. Putri dan S. A. Rahmah, “Implementasi Data Mining Dengan Algoritma K-Means Clustering Untuk Analisis Bisnis Pada Perusahaan Asuransi,” Djtechno : Jurnal Teknologi Informasi, vol. V, no. 1, pp. 139-152, 2024.

] Nugraha, O. Nurdiawan dan G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. VI, no. 2, pp. 849-855, 2022.

] N. S. Nurajizah dan A. Salbinda, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten,” Jurnal Teknik Komputer AMIK BSI, vol. VII, no. 2, pp. 158-163, 2021.

] P. A. Pratiwi, F. Mashalani , M. Hafizhah, A. B. Sabrina, N. H. Harahap dan D. Y. Siregar, “Mengungkap Metode Observasi Yang Efektif Menurut Pra-Pengajar EFL,” Mutiara : Jurnal Penelitian dan Karya Ilmiah, vol. II, no. 1, pp. 133-149, 2024.

] S. Devi, K. Hotimah, R. S. A, A. Karimullah dan M. I. Anshori, “Mewawancarai Kandidat: Strategi untuk Meningkatkan Efisiensi dan Efektivitas,” MASMAN : Master Manajemen, vol. II, no. 2, pp. 66-78, 2022.

] E. Kamti, A. P. Sanjaya dan M. N. Nababan, “Clustering Penjualan Terbaik Dengan Sum of Squares Error Dan Menentukan Nilai K Menggunakan Algoritma K-Means,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. XXIII, no. 2, pp. 387-393, 2024.

] M. R. Palevi dan Z. Indra, “Implementasi Algoritma K-Means Clustering Dengan Pendekatan Active Learning Pada Siswa SMA Untuk Menentukan Jurusan Ke Perguruan Tinggi,” Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer), vol. XXIII, no. 1, pp. 26-36, 2024.

] R. Meng and W. He, “Data Mining,” in Flavoromics, Boca Raton: CRC Press, 2023, pp. 83–122. doi: 10.1201/9781003268758-8.

] D. Yates and M. Z. Islam, “Data Mining on Smartphones: An Introduction and Survey,” ACM Comput Surv, vol. 55, no. 5, 2022, doi: 10.1145/3529753.

] M. J. Hamid Mughal, “Data mining: Web data mining techniques, tools and algorithms: An overview,” International Journal of Advanced Computer Science and Applications, vol. 9, no. 6, 2018, doi: 10.14569/IJACSA.2018.090630.

] S. R. Durugkar, R. Raja, K. K. Nagwanshi, and S. Kumar, “Introduction to data mining,” 2022. doi: 10.1002/9781119792529.ch1.

] M. A. Ibrahim, “Jenis, Klasifikasi dan Karakteristik Media Pembelajaran,” Journal of Economic Perspectives, vol. 2, no. 1, 2022.

] A. P. Wibawa, M. Guntur, A. Purnama, M. Fathony Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, vol. 3, no. 1, 2018.

] M. Wibowo and Muh. R. F. Djafar, “Perbandingan Metode Klasifikasi Untuk Deteksi Stress Pada Mahasiswa di Perguruan Tinggi,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 1, 2023, doi: 10.30865/mib.v7i1.5182.

] S. Jamil, M. Ur Rahman, and Fawad, “A Comprehensive Survey of Digital Twins and Federated Learning for Industrial Internet of Things (IIoT), Internet of Learning for Industrial Internet of Things (IIoT), Internet of Vehicles (IoV) and Internetofof Drones (IoD),” Applied System Innovation, vol. 5, no. 3, 2022, doi: 10.3390/asi5030056.

] R. L. Kumar, F. Khan, S. Kadry, and S. Rho, “A Survey on blockchain for industrial Internet of Things: Blockchain for Internet of Things,” Alexandria Engineering Journal, vol. 61, no. 8, 2022, doi: 10.1016/j.aej.2021.11.023.

] S. Villamil, C. Hernández, and G. Tarazona, “An overview of internet of things,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 5, 2020, doi: 10.12928/TELKOMNIKA.v18i5.15911.

Dimensions Badge
Published
2024-12-25
How to Cite
Nadya, N. S., & Wahyuni, S. (2024). Implementasi Data Mining Dalam Mengelompokkan Tingkat Kepuasan Pemakaian Jasa Cleaning Service Dengan Menggunakan Algoritma K-Means Clustering . Bulletin of Information Technology (BIT), 5(4), 340 - 354. https://doi.org/10.47065/bit.v5i4.1729
Section
Articles

Most read articles by the same author(s)