Analysis Of Public Sentiment Towards The Corruption Eradication Commission On Twitter

  • Siti Nurhaliza Sofyan * Mail Universitas Pembangunan Panca Budi Medan , Indonesia
  • Sri Wahyuni Universitas Pembangunan Panca Budi Medan , Indonesia
Keywords: Sentiment Analysis, Corruption Eradication Commission, Orange Data Mining, Multilingual Sentiment

Abstract

The Corruption Eradication Commission (KPK) is a state institution in Indonesia which was formed to eradicate corruption. The Corruption Eradication Committee (KPK) [1]has the main task of carrying out investigations, inquiries and prosecutions of criminal acts of corruption. This institution is independent and free from the influence of any power in carrying out its duties and authority [2]. This research explores the analysis of Indonesian people's sentiment towards the KPK in the current situation such as arrests for corruption and the policies and actions carried out by the KPK. Sentiment analysis used in the journal with data obtained from Twitter data and using Orange Data Mining, with multilingual sentiment analysis techniques to analyze Indonesian people's sentiment towards the KPK agency. The results of sentiment analysis are visualized through box plots and scatter plots, which aim to classify Twitter users based on their emotional responses. The findings of this research provide valuable insight into the landscape of sentiment surrounding the Corruption Eradication Commission's bicycles, as well as providing sustainable benefits and are expected to be used as material for evaluating the government's role. Data totaling 300 tweets were processed using text mining techniques in the Orange Data Mining application [3][4]. This technique consists of several stages of text processing, namely transformation, filtering, and tokenization. The text processing results are extracted via wordcloud to find out the features of words that are often discussed by the public. After that, sentiment analysis was carried out to determine public opinion regarding the KPK institution based on positive, negative and neutral categories [5], [6]

References

R. Nooraeni, A. Fikri Fadhilah I, H. Dwi, S. Fatimatul, S. Pertiwi, and Y. Ronaldias, “Analisis Sentimen Data Twitter Mengenai Isu RUU KPK Dengan Metode Support Vector Machine (SVM),” vol. 22, no. 1, 2020, doi: 10.31294/p.v21i2.

A. Fathiarahma, A. Voutama, T. Ridwan, and N. Heryana, “Analisis Text Mining Klasifikasi Kegiatan Keluarga menggunakan Orange dengan Metode Naive Bayes,” J. Teknol. Terpadu, vol. 9, no. 1, pp. 35–41, 2023, doi: 10.54914/jtt.v9i1.606.

M. Saputra, S. Nurhaliza Sofyan, A. Aulia, A. Ernawati, A. Oftasari, and R. Farta wijaya, “Implementation of E-Commerce System as SME Development Strategy in the Digital Era,” Bull. Inf. Technol., vol. 5, no. 3, pp. 195–202, 2024, doi: 10.47065/bit.v5i2.1545.

S. K. P. Barakbah, Ali Ridho, M. K. Karlita, Tita, S.Kom., and S. K. Ahsan, Ahmad Syauqi, Logika dan Algoritma, no. tahun 2013. Surabaya: PENS, 2012.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

P. Peralatan et al., “J-SISKO TECH Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD Penerapan Data Mining Untuk Menentukan Pola,” ◼, vol. 118, no. 1, pp. 118–136, 2020.

Y. Nurtikasari, Syariful Alam, and Teguh Iman Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,” INSOLOGI J. Sains dan Teknol., vol. 1, no. 4, pp. 411–423, 2022, doi: 10.55123/insologi.v1i4.770.

F. Sulianta, “Buku Dasar Data Mining from A to Z,” no. January, 2024.

J. Han and M. Kamber, Data Mining Concept and Technique. San Francisco: Morgan Kauffman, 2006.

F. SLN, “Buku Dasar Data Mining from A to Z,” no. January, pp. 15–15, 2023.

P. Bhargavi and S. Jyothi, “Applying Naive Bayes Data Mining Technique for Classification of Agricultural Land Soils,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 9, no. 8, pp. 117–122, 2009.

D. Sophia and L. Y. Banowosari, “Implementasi Metode Aturan Asosiasi Menggunakan Algoritma Apriori Pada Data Transaksi Penjualan Di Waroeng Spesial Sambal,” J. Inform. dan Komput., vol. 22, no. 1, pp. 44–56, 2017.

R. A. raffaidy Wiguna and A. I. Rifai, “Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining,” J. Inf. Syst. Informatics, vol. 3, no. 1, pp. 1–12, 2021, doi: 10.33557/journalisi.v3i1.78.

T. Yuniarti, J. Astuti, F. Faujiyah, and M. Zaiyar, “Pendekatan Text Mining dalam Menilai Sentimen Publik pada Baterai Kendaraan Listrik,” vol. IX, no. 4, pp. 10602–10612, 2024.

M. Muharrom, “Analisis Komparasi Algoritma Data Mining Naive Bayes, K-Nearest Neighbors dan Regresi Linier Dalam Prediksi Harga Emas,” Bull. Inf. Technol., vol. 4, no. 4, pp. 430–438, 2023, doi: 10.47065/bit.v4i4.986.

E. Mardiani et al., “Membandingkan Algoritma Data Mining Dengan Tools Orange untuk Social Economy,” Digit. Transform. Technol., vol. 3, no. 2, pp. 686–693, 2023, doi: 10.47709/digitech.v3i2.3256.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.

Hafiz Aryan Siregar, Muhammad Zacky Raditya, Aditya Nugraha Yesa, and Inggih Permana, “Comparison of Classification Algorithm Performance for Diabetes Prediction Using Orange Data Mining,” Indones. J. Data Sci., vol. 4, no. 3, pp. 176–182, 2024, doi: 10.56705/ijodas.v4i3.103.

Dimensions Badge
Published
2024-12-23
How to Cite
Nurhaliza Sofyan, S., & Wahyuni, S. (2024). Analysis Of Public Sentiment Towards The Corruption Eradication Commission On Twitter. Bulletin of Information Technology (BIT), 5(4), 287 - 294. https://doi.org/10.47065/bit.v5i4.1711
Section
Articles

Most read articles by the same author(s)