Implementasi Algoritma Naïve Bayes dalam Menganalisis Sentimen Review Pengguna Tokopedia pada Produk Kesehatan
Abstract
It must be realized that customer satisfaction is the main goal for companies in developing their business. Because customers' opinions written on social media will have a big influence on the company and potential customers. In its development, it is increasingly found in various online media, one of which is Tokopedia. Product reviews are an important source of information regarding quality, service and delivery from both consumers and manufacturers. With a very large amount of data for each product on Tokopedia, analyzing and concluding product review information will definitely take a lot of time if done manually. To overcome this, a sentiment analysis system is needed that can automatically extract important information that can objectively determine product quality and handle large amounts of textual information. The sentiment analysis system consists of several stages, namely crawling, pre-processing, word weighting, and sentiment classification. By applying the Naïve Bayes algorithm through selecting range and frequency features, accuracy, accuracy and recall results will be obtained using the Confusion Matrix test. The dataset used is from the kaggle.com site regarding customer sentiment on health products with the type of mask. using the Naïve Bayes Algorithm Method to determine the sentiment of user reviews by classifying 2 positive and negative classes using the NLP approach produces an accuracy value of 88%.
References
S. M. Salsabila, A. A. Murtopo, and N. Fadhilah, “Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier,” vol. 11, no. September, pp. 30–35, 2022.
E. Laia and M. Yamin, “Penerapan Algoritma Naïve Bayes dalam Menganalisis Sentimen pada Review Pengguna E-Commerce,” vol. 4, no. 1, pp. 305–316, 2023, doi: 10.30865/klik.v4i1.1186.
P. A. D. A. G. Oogle and P. L. A. Y. S. Tore, “T Ext M Ining S Entimen A Nalisis P Engguna A Plikasi M Arketplace T Okopedia B Erdasar R Ating D An K Omentar,” pp. 33–40, 2022.
B. Z. Ramadhan, I. Riza, and I. Maulana, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes,” vol. 6, no. 2, pp. 220–225, 2022.
R. Maulana, P. Hertaryawan, M. Raihan, and I. Santoso, “KOMPARASI ALGORITMA NAIVE BAYES DAN K- NEAREST NEIGHBOR PADA ANALISIS SENTIMEN,” vol. 17, no. 2, pp. 177–189, 2023.
C. D. A. A. P. Chrishariyani et al., “Kepuasan Pengguna Layanan Shopee Food Menggunakan Algoritma Naive Bayes,” vol. 02, pp. 99–106, 2022, doi: 10.21456/vol12iss2pp99-106.
M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.
A. Karim, “Penerapan Algoritma Entropy dan Aras Menentukan Desa Terbaik Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 1, pp. 33–43, 2022.
A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.
G. Ginting, S. Alvita, A. Karim, and M. Syahrizal, “Penerapan Complex Proportional Assessment ( COPRAS ) Dalam Penentuan Kepolisian Sektor Terbaik,” vol. 4, no. 2, pp. 616–631, 2020.
A. Ernawati, “Penerapan Algoritma Entropy Dan Aras Menentukan Penerima Beasiswa Mahasiswa Berprestasi Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 2, pp. 74–84, 2022.
K. Sari and R. P. Cahyono, “Analisis Mood Twitter Melalui Layanan J & T Express Selama Harbolnas 12 / 12 ( Dengan Metode Naive Bayes ),” vol. 2, no. 11, pp. 1–16, 2022.
V. No, A. A. Sari, M. K. Anam, and M. Jamaris, “Edumatic : Jurnal Pendidikan Informatika Sistem Prediksi Keuntungan Influencer Pengguna E-Commerce Shopee Affiliates menggunakan Metode Naïve Bayes,” vol. 6, no. 2, pp. 394–403, 2022, doi: 10.29408/edumatic.v6i2.6787.
T. H. Pudjiantoro, F. R. Umbara, and B. Trihatmoko, “Analisis Sentimen Terhadap E-commerce Pada Media Sosial Twitter Menggunakan Metode Naïve bayes,” pp. 1–7, 2021.
J. J. A. Limbong, I. Sembiring, K. D. Hartomo, U. Kristen, S. Wacana, and P. Korespondensi, “Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Analysis Of Review Sentiment Classification On E-Commerce Shopee Word Cloud Based With Naïve Bayes And K-Nearest Neighbor Methods,” vol. 9, no. 2, pp. 347–356, 2022, doi: 10.25126/jtiik.202294960.
A. Kepuasan et al., “Analisis kepuasan penggunaan aplikasi shopee menggunakan algoritma naïve bayes,” pp. 3–6.
A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” vol. 2, no. 3, pp. 207–217, 2015.
M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.
H. Syahputra, M. Syahrizal, S. Suginam, S. D. Nasution, and B. Purba, “SPK Pemilihan Konten Youtube Layak Tonton Untuk Anak-Anak Menerapkan Metode Additive Ratio Assessment (ARAS),” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 678–685, 2019, [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks/article/view/215/210.
S. Alex Rizky Saputra, “Implementasi Algoritma ARAS Pada SPK untuk Menentukan Peringkat Dosen Terbaik,” Indones. J. Comput. Sci., vol. 11, no. 1, pp. 578–591, 2022.
A. B. Ginting, “Implementasi Metode Additive Ratio Assessment ( ARAS ) Dalam Menentukan Perusahaan Penyalur Tenaga Kerja Terbaik,” vol. 9, pp. 174–182, 2021.
A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.
Copyright (c) 2023 Andi Ernawati, Ayu Ofta Sari, Siti Nurhaliza Sofyan, Muhammad Iqbal, Rian Farta Wijaya Wijaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


