Implementasi Algoritma Naïve Bayes dalam Menganalisis Sentimen Review Pengguna Tokopedia pada Produk Kesehatan

  • Andi Ernawati * Mail Univerista Pembangunan Pancabudi, Indonesia
  • Ayu Ofta Sari Universitas Pembangunan Pancabudi, Indonesia
  • Siti Nurhaliza Sofyan Universitas Pembangunan Pancabudi, Indonesia
  • Muhammad Iqbal Universitas Pembangunan Pancabudi, Indonesia
  • Rian Farta Wijaya Wijaya Universitas Pembangunan Pancabudi, Indonesia
Keywords: Naïve Bayes Algorithm; Sentiment; Tokopedia

Abstract

It must be realized that customer satisfaction is the main goal for companies in developing their business. Because customers' opinions written on social media will have a big influence on the company and potential customers. In its development, it is increasingly found in various online media, one of which is Tokopedia. Product reviews are an important source of information regarding quality, service and delivery from both consumers and manufacturers. With a very large amount of data for each product on Tokopedia, analyzing and concluding product review information will definitely take a lot of time if done manually. To overcome this, a sentiment analysis system is needed that can automatically extract important information that can objectively determine product quality and handle large amounts of textual information. The sentiment analysis system consists of several stages, namely crawling, pre-processing, word weighting, and sentiment classification. By applying the Naïve Bayes algorithm through selecting range and frequency features, accuracy, accuracy and recall results will be obtained using the Confusion Matrix test. The dataset used is from the kaggle.com site regarding customer sentiment on health products with the type of mask. using the Naïve Bayes Algorithm Method to determine the sentiment of user reviews by classifying 2 positive and negative classes using the NLP approach produces an accuracy value of 88%.

 

References

S. M. Salsabila, A. A. Murtopo, and N. Fadhilah, “Analisis Sentimen Pelanggan Tokopedia Menggunakan Metode Naïve Bayes Classifier,” vol. 11, no. September, pp. 30–35, 2022.

E. Laia and M. Yamin, “Penerapan Algoritma Naïve Bayes dalam Menganalisis Sentimen pada Review Pengguna E-Commerce,” vol. 4, no. 1, pp. 305–316, 2023, doi: 10.30865/klik.v4i1.1186.

P. A. D. A. G. Oogle and P. L. A. Y. S. Tore, “T Ext M Ining S Entimen A Nalisis P Engguna A Plikasi M Arketplace T Okopedia B Erdasar R Ating D An K Omentar,” pp. 33–40, 2022.

B. Z. Ramadhan, I. Riza, and I. Maulana, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Dengan Menggunakan Algoritma Naïve Bayes,” vol. 6, no. 2, pp. 220–225, 2022.

R. Maulana, P. Hertaryawan, M. Raihan, and I. Santoso, “KOMPARASI ALGORITMA NAIVE BAYES DAN K- NEAREST NEIGHBOR PADA ANALISIS SENTIMEN,” vol. 17, no. 2, pp. 177–189, 2023.

C. D. A. A. P. Chrishariyani et al., “Kepuasan Pengguna Layanan Shopee Food Menggunakan Algoritma Naive Bayes,” vol. 02, pp. 99–106, 2022, doi: 10.21456/vol12iss2pp99-106.

M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.

A. Karim, “Penerapan Algoritma Entropy dan Aras Menentukan Desa Terbaik Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 1, pp. 33–43, 2022.

A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.

G. Ginting, S. Alvita, A. Karim, and M. Syahrizal, “Penerapan Complex Proportional Assessment ( COPRAS ) Dalam Penentuan Kepolisian Sektor Terbaik,” vol. 4, no. 2, pp. 616–631, 2020.

A. Ernawati, “Penerapan Algoritma Entropy Dan Aras Menentukan Penerima Beasiswa Mahasiswa Berprestasi Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 2, pp. 74–84, 2022.

K. Sari and R. P. Cahyono, “Analisis Mood Twitter Melalui Layanan J & T Express Selama Harbolnas 12 / 12 ( Dengan Metode Naive Bayes ),” vol. 2, no. 11, pp. 1–16, 2022.

V. No, A. A. Sari, M. K. Anam, and M. Jamaris, “Edumatic : Jurnal Pendidikan Informatika Sistem Prediksi Keuntungan Influencer Pengguna E-Commerce Shopee Affiliates menggunakan Metode Naïve Bayes,” vol. 6, no. 2, pp. 394–403, 2022, doi: 10.29408/edumatic.v6i2.6787.

T. H. Pudjiantoro, F. R. Umbara, and B. Trihatmoko, “Analisis Sentimen Terhadap E-commerce Pada Media Sosial Twitter Menggunakan Metode Naïve bayes,” pp. 1–7, 2021.

J. J. A. Limbong, I. Sembiring, K. D. Hartomo, U. Kristen, S. Wacana, and P. Korespondensi, “Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Analysis Of Review Sentiment Classification On E-Commerce Shopee Word Cloud Based With Naïve Bayes And K-Nearest Neighbor Methods,” vol. 9, no. 2, pp. 347–356, 2022, doi: 10.25126/jtiik.202294960.

A. Kepuasan et al., “Analisis kepuasan penggunaan aplikasi shopee menggunakan algoritma naïve bayes,” pp. 3–6.

A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” vol. 2, no. 3, pp. 207–217, 2015.

M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.

H. Syahputra, M. Syahrizal, S. Suginam, S. D. Nasution, and B. Purba, “SPK Pemilihan Konten Youtube Layak Tonton Untuk Anak-Anak Menerapkan Metode Additive Ratio Assessment (ARAS),” Semin. Nas. Teknol. Komput. Sains, vol. 1, no. 1, pp. 678–685, 2019, [Online]. Available: https://prosiding.seminar-id.com/index.php/sainteks/article/view/215/210.

S. Alex Rizky Saputra, “Implementasi Algoritma ARAS Pada SPK untuk Menentukan Peringkat Dosen Terbaik,” Indones. J. Comput. Sci., vol. 11, no. 1, pp. 578–591, 2022.

A. B. Ginting, “Implementasi Metode Additive Ratio Assessment ( ARAS ) Dalam Menentukan Perusahaan Penyalur Tenaga Kerja Terbaik,” vol. 9, pp. 174–182, 2021.

A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.

Dimensions Badge
Published
2023-12-24
How to Cite
Ernawati, A., Sari, A. O., Sofyan, S. N., Iqbal, M., & Wijaya, R. F. W. (2023). Implementasi Algoritma Naïve Bayes dalam Menganalisis Sentimen Review Pengguna Tokopedia pada Produk Kesehatan. Bulletin of Information Technology (BIT), 4(4), 533 - 543. https://doi.org/10.47065/bit.v4i4.1090
Section
Articles