Analisis Kepuasan Wisatawan Pada Daerah Kota Binjai Menggunakan Algoritma C4.5 Berbasis Mobile
Abstract
Rating is a way or method to obtain information in any form that can be used as a basis for decision making. Ratings of a tourist object is often a standard for tourists to determine tourist destinations. Ratings made by tourists indicate the level of satisfaction with the services provided by each tourist attraction that has been visited. This study aims to determine and analyze the level of tourist satisfaction, especially in the city of Binjai using the C4.5 algorithm. Algorithm C4.5 is a technique in data mining to classify data with the concept of a decision tree. The data used to analyze the level of tourist satisfaction is data collected from respondents using an application built on the Android platform. Respondents who collected as many as 30 people were tourists who visited the Binjai City tourist attraction. The results of this study indicate that tourists are satisfied with the Cleanliness indicator which is indicated by the highest gain value of 0.283. While the lowest indicator is obtained in the parking variable with a gain value of 0.085. Based on the results of this research, it is hoped that it can become a reference for evaluating the services provided to increase tourist satisfaction
References
A. . Muljadi, Pengantar Pariwisata Indonesia. PT. Raja Grafindo Persada, 2009.
F. Kalebos, “Faktor-Faktor Yang Mempengaruhi Kepuasan Wisatawan Yang Berkunjung Ke Daerah Wisata Kepulauan,” J. Ris. Bisnis dan Manaj. Vol 4 ,No.3, Ed. Khusus Pemasar. Keuang. 2016 489-502, vol. 4, pp. 489–502, 2016.
B. HSSINA, A. MERBOUHA, H. EZZIKOURI, and M. ERRITALI, “A comparative study of decision tree ID3 and C4.5,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 2, 2014, doi: 10.14569/specialissue.2014.040203.
J. R. Quinlan, C4.5: Programs for Machine Learning. 2014.
Nazruddin Safaat H, Android : Pemrograman Aplikasi Mobile Smartphone dan Tablet PC Berbasis Android (Edisi Revisi). 2012.
D. Telaumbanua and I. Kurniawati, “Penerapan Algoritma C4.5 Untuk Klasifikasi Kepuasan Pelanggan Pada Jasa Layanan Pengiriman,” JoMMiT J. Multi Media dan IT, vol. 6, no. 1, 2022, doi: 10.46961/jommit.v6i1.524.
I. Düntsch and G. Gediga, “Confusion Matrices and Rough Set Data Analysis,” J. Phys. Conf. Ser., vol. 1229, no. 1, 2019, doi: 10.1088/1742-6596/1229/1/012055.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021, [Online]. Available: http://ejurnal.tunasbangsa.ac.id/index.php/jsakti/article/view/369.
A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.
M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.
N. Oktari, D. P. Utomo, S. Aripin, and A. Karim, “Penerapan Metode Operational Competitiveness Rating Analysis ( OCRA ) Dalam Penerimaan Karyawan Perjanjian Kerja Waktu Tertentu ( PKWT ),” vol. 3, no. 3, pp. 218–226, 2022, doi: 10.47065/josh.v3i3.1471.
A. Ernawati, “Penerapan Algoritma Entropy Dan Aras Menentukan Penerima Beasiswa Mahasiswa Berprestasi Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 2, pp. 74–84, 2022.
A. Karim and Dkk, “SISTEM PAKAR DIAGNOSA KEGAGALAN KONEKSI TCP/IP PADA JARINGAN KOMPUTER MENGGUNAKAN METODE FORWARD CHAINING,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. I, no. I, pp. 138–144, 2017.
M. Bobbi, K. Nasution, S. Suryadi, and A. Karim, “Sistem Pendukung Keputusan Dalam Rekomendasi Kelayakan nasabah Penerima Kredit Menerapkan Metode MOORA dan MOOSRA,” vol. 4, no. 3, pp. 1284–1292, 2022, doi: 10.47065/bits.v4i3.2610.
Copyright (c) 2023 Yelansya Ela, Eko Hariyanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


