Penerapan Algoritma XGBoost Dalam Prediksi Harga Sewa Kos Di Kota Samarinda

  • Amalia Rahman * Mail STMIK Widya Cipta Dharma, Indonesia
  • Amelia Yusnita STMIK Widya Cipta Dharma, Indonesia
  • Hanifah Ekawati STMIK Widya Cipta Dharma, Indonesia

Abstract

The population growth and increasing economic activity in Samarinda City have led to a rising demand for temporary housing such as boarding houses. However, rental price determination is still largely based on the owner’s intuition rather than objective factors such as available facilities, room specifications, transportation accessibility, and proximity to public amenities. This study aims to develop a rental price prediction model for boarding houses using the Extreme Gradient Boosting (XGBoost) algorithm with a Knowledge Discovery in Database (KDD) approach. The research data were collected through a web scraping process from the Mamikos platform, yielding 231 initial records, which were then cleaned and filtered for outliers, resulting in 225 valid data points. Five main features derived from feature engineering were utilized in the model, namely Facility Score, Combined Specification Score, Nearest Place Score, Transportation Score, and Rental System Score. The evaluation results show that the XGBoost model achieved a Mean Absolute Error (MAE) of Rp348,822, a Root Mean Squared Error (RMSE) of Rp416,139, and a coefficient of determination (R²) of 0.612. These values indicate that the model can explain 61.2% of the variation in rental prices with reasonably good predictive performance. The feature importance analysis reveals that Facility Score and Combined Specification Score are the most influential factors affecting rental prices, while transportation and rental system factors contribute less significantly. This study is expected to serve as a reference for boarding house owners, tenants, and policymakers in determining more objective and competitive rental prices based on a data mining approach.

References

BPS Kota Samarinda, Statistik Daerah Kota Samarinda 2024, Samarinda: Badan Pusat Statistik, 2024.

E. Santoso and D. Ramadhan, “Analisis Kebutuhan Hunian di Kota Samarinda Menggunakan Data BPS,” Jurnal Ekonomi Wilayah, vol. 5, no. 2, 2023.

M. Fadli and S. Kurniawan, “Perbandingan Metode Penentuan Harga Kos Berdasarkan Fasilitas dan Lokasi,” Jurnal Sosio Informatika, vol. 2, no. 1, 2022.

R. Wibisono et al., “Analisis Fasilitas terhadap Harga Hunian di Kota Bandung,” Jurnal Sistem Cerdas, vol. 3, no. 1, 2021.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM SIGKDD, 2016.

M. Albar and I. Siregar, “Evaluasi Model Gradient Boosting dalam Prediksi Properti,” Jurnal Teknologi dan Sistem Cerdas, vol. 4, no. 3, 2023.

R. Sitorus and N. Pane, “Implementasi Extreme Gradient Boosting untuk Prediksi Harga Rumah di Kota Medan,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 2, 2024.

B. W. Sari and D. Prabowo, “Analisis Perbandingan Prediksi Harga Rumah dengan Random Forest, Gradient Boosting, dan XGBoost,” Jurnal Intellect, vol. 4, no. 1, 2025.

Y. F. Munawar and A. Arisal, “Analisis Prediksi Harga Sewa Ruko Menggunakan Pendekatan Machine Learning,” RIGGS Journal, vol. 4, no. 3, 2025.

D. N. Mali, M. Danianti, and N. A. Tinus, “Analisis Akurasi Algoritma XGBoost untuk Prediksi Harga Properti Menggunakan Data Geospasial,” Jurnal Teknologi Informasi dan Komputer (JTIK), vol. 5, no. 2, pp. 87–95, 2024.

M. N. Hibatulloh and G. D. Prakoso, “Prediksi Harga Rumah di Bandung Menggunakan Ensemble Learning,” JPIT Informatika, vol. 10, no. 2, 2025.

D. Aqsha, “Perbandingan Kinerja Algoritma XGBoost dan Random Forest untuk Prediksi Harga Rumah di Jabodetabek,” Jurnal Teknologi Informasi UNTAR, 2024.

W. Kurniawan and U. Indahyanti, “Prediksi Angka Harapan Hidup Penduduk Menggunakan Metode XGBoost,” IJAT Journal, vol. 8, no. 1, 2024.

F. Riyadi and E. Wahyudi, “Optimasi Model Prediksi Properti dengan Variabel Spasial,” IJTI Journal, vol. 5, no. 1, 2024.

M. Alfian et al., “Integrasi Data Geospasial dalam Prediksi Harga Properti,” Jurnal Informatika Unhas, vol. 3, no. 2, 2022.

H. Damanik and I. Kurniasari, “Pemodelan Harga Rumah Menggunakan XGBoost,” Jurnal Teknologi Informasi Unair, vol. 4, no. 2, 2024.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17(3), 37–54.

N. Siregar & D. Fitriani, “Implementasi Algoritma XGBoost untuk Prediksi Harga Properti,” Jurnal Ilmu Komputer dan Informatika (JIKI), vol. 5, no. 3,2024.

A. Nasution & M. Widodo, “Evaluasi Model Prediksi Harga Properti Menggunakan MAE, RMSE, dan R²,” Jurnal Sistem Informasi dan Teknologi Cerdas (JSITC), vol. 4, no. 1, 2024.

L. Adityo & H. Mulyani, “Metodologi Penelitian Data Mining untuk Prediksi Properti,” Jurnal Teknologi Informasi dan Komputer, vol. 6, no. 2, 2023.

Dimensions Badge
Published
2025-12-14
How to Cite
Rahman, A., Yusnita, A., & Ekawati, H. (2025). Penerapan Algoritma XGBoost Dalam Prediksi Harga Sewa Kos Di Kota Samarinda. Bulletin of Information Technology (BIT), 6(4), 379 - 390. https://doi.org/10.47065/bit.v7i1.2304
Section
Articles

Most read articles by the same author(s)