Evaluation Of COCOMO Model Accuracy In Software Effort Estimation

  • Umar Jeklin * Mail STMIK Widya Cipta Dharma, Indonesia
  • Muhammad Ibnu Saad STMIK WIdya Cipta Dharma, Indonesia
  • Hanifah ekawati STMIK WIdya Cipta Dharma, Indonesia
Keywords: analysis data; software estimation

Abstract

Accurate effort estimation underpins on-time,on-budget software delivery. This study empirically assesses  the baseline Constructive cost Model (COCOMO) by applying standard organic-mode parameters (a = 2.4, b = 1.05) to the COCOMONASA dataset, which contains 63 NASA projects ranging from 2 KLOC to 100 KLOC. Model ourputs are benchmarked against recorded person-month effort using Mean Absolute Error (MAE), Mean Magnitude of Relative Error (MMRE), and Predcitions at 25 percent error (PRED 0.25). Results show MAE values 295-661 person-months and an MMRE near 1.0, indicating average relative error of ~100 percent. PRED (0.25) equals 0.0, meaning no project is estimated within the industry-accepted 25% band. Sensitivity tests on 5- and 20-project subsets reveal similar patterns, confiriming that the inaccuracy is systemic rather than dataset-specific. Using uncalibrated COCOMO in present-day projects poses a high risk of severe under- or over allocation of resources, potentially trigerring budget overruns and schedule slips. By quantitatively exposing where and how the baseline model fails, this work provides a benchmark for and a roadmap toward-targeted parameter calibration and hybrid approaches that incorporate additional cost drivers or machine-learning techniques. Future research should explore automatic parameter tuning and context-aware hybrid models to achieve dependable effort estimation in contemporary software engineering.

References

Ahmad, M., & Wani, M. A. (2023). Comparative Analysis of Traditional and Modern Software Effort Estimation Techniques. International Journal of Computer Applications, 175(3), 22-27.

Ahmed, M., Ibrahim, N. B., W., Ahmed, A., Juniadi, M.., Flores, E. S., & Anand, D. (2024). AHybrid Model for Improving Software Cost Estimation in Global Software Developemnt. Computers, Material & Continua, 78(1), 1399-1422. Httips://doi.org/10.32604/cmc.2023.046648

Alenezi, M., & Mahmood, A. K. (2020). A Comparative Study of Software Effort Estimation Models. International Journal of Advanced Computer Science and Applications, 11(8), 1-6.

Beazley, D. (2020). Python Essential Reference (5th ed). Boston, MA: Addison-Wesley.

Bisong, E. (2019). Building Machine Learning and Deep Learning Model on Google Cloud Platform. Berkeley, CA: Apress.

Boehm, B. W., Abts, C.,, & Chulani, S. (2020). Software cost estimation with COCOMO II. Prentice Hall.

Chollet, F. (2021). Deep Learning with Python (2nd ed.). Manning Publications

Geron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (3rd ed). Sebastopol, CA: Apress.

Guttag, J. V. (2021). Introduction to Computation and Programming Using Python (3rd ed.). Cambridge, MA: MIT Press.

Jorgensen, M., & Shepperd, M (2019). A systematic review of software development cost estimation studies. IEE Transactions on Software Engineering, 45(1), 1-26. https://doi.org/10.1109/TSE.2017.2754298

Lutz, M. (2019). Learning Python (5th ed.). Sebastopol, CA: O’Reilly Media

Mahmood, Y., et al. (2021). Software Effort Estimation Accuracy Prediction of Machine Learning Techniques: A Systematic Performance Evaluation. arXiv:2101.10658. [online]. https//arxiv.org/abs/2101.10658

McKinney, W. (2020). Python for Data Analysis (3rd ed.). Sebastopol CA:O’Reilly Media.

Pandey, S., & Brave, S. (2019). Software Effort Estimation Using Rao Algorithm. International Journal of Information Engineering and Electronic Business, 11(1), 16-24.

Pandey, S., Dubey, S. K., & Rana, A. (2021). Software effort estimation techniques: A systematic literature review. *Journal King Saud University – Computer and Information Scinces, 33*(1), 10-25. https://doi.org/10.1016/j.jksuci.2018.03.007

Patton, M. Q. (2020). Utilization-Focused Evaluation (5th ed.). Thousand Oaks, CA: Saga Publications.

Pressman, R. S., & Maxim, B. R. (2020). Software engineering: A practitioner approach (9th ed.). McGraw-Hill Education

Rascha, S. & Mirjalili, V. (2020). Python Machine learning (3rd ed.). Packt Publishing

Raza, S. A., Qureshi, M. R. J., & Ahmad, F. (2022). Software Effort Estimation using Machine Learning Techniques: A Systematic Literature Review. Journal of Software: Evolution and Process, 34(2), e2384.

Sommerville, I. (2020). Sofware engineering (10th ed.). Pearson Education.

Stufflebeam, D.L., & Coryn, C. L. S. (2019). Evaluation Theory, Models, and Applications (2nd ed.). San Francisco, CA: Jossey-Bass.

Thakur, D., & Kaur, G. (2021). A Review of Software Effort Estimation Techniques.. International Journal of Scincetific & Technology Research, 10(1), 258-262.

Van Rossum, G. (2020). Python Programming Laguage. Python Software Foundation. https://www.python.org/

Zhang, C., Bengio, S., Hardt M., Recht, B., & Vinyals, O. (2020). Understanding deep learning (still) requires rethinking generalization. Communications of the-ACM, 64(3), 107-115. https//:doi.org/10.1145/3446776

Dimensions Badge
Published
2025-06-17
How to Cite
Jeklin, U., Ibnu Saad, M., & ekawati, H. (2025). Evaluation Of COCOMO Model Accuracy In Software Effort Estimation. Bulletin of Information Technology (BIT), 6(2), 126 - 135. https://doi.org/10.47065/bit.v6i2.2027
Section
Articles