Application of the C45 Algorithm to Predict Student Academic Scores

  • Andi Ernawati * Mail Universitas Pembangunan Pancabudi, Indonesia
  • Zulham Sitorus Universitas Pembangunan Pancabudi, Indonesia
  • Ananda Aulia Universitas Pembangunan Pancabudi, Indonesia
  • Ayu Ofta Universitas Pembangunan Pancabudi, Indonesia
Keywords: Mark; Academic; C4.5; Algorithm

Abstract

Student grades are the results of teaching and learning activities on a campus. So you can know your target for completing your studies. This research uses the C4.5 Algorithm which can help predict the results of student assessments. The dataset consists of student achievement index, place of residence, discipline, lecturer's role in lectures. From 40 datasets we have obtained a decision on student academic achievement and obtained performance results from accuracy results of 86.36% with class precision predicate Yes=84.62%, No=88.89% and class recall Yes=91.67%, No=80.00%.

References

A. Rohman and A. Rufiyanto, “Implementasi Data Mining Dengan Algoritma Decision Tree C4 . 5 Untuk Prediksi Kelulusan Mahasiswa Di Universitas Pandaran,” Proceeding SINTAK 2019, pp. 134–139, 2019.

R. Kurniasari and A. Fatmawati, “Penerapan Data Mining dengan Algoritma C4.5 untuk Penentuan Jurusan Sekolah Menengah Atas,” J. INSYPRO (Information Syst. Process., vol. 6, no. 2, pp. 3–9, 2021, doi: 10.24252/insypro.v6i2.7912.

M. Chair, Y. N. Nasution, and N. A. Rizki, “Aplikasi Klasifikasi Algoritma C4.5 (Studi Kasus Masa Studi Mahasiswa Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Mulawarman Angkatan 2008),” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 12, no. 1, p. 50, 2017, doi: 10.30872/jim.v12i1.223.

F. R. Wiratama, “Implementasi Algoritma C4 . 5 untuk Analisa Performa Pelayanan,” Explor. Inform., vol. 6, pp. 127–135, 2017.

A. Waqar, “Intelligent decision support systems in construction engineering: An artificial intelligence and machine learning approaches,” Expert Syst. Appl., vol. 249, p. 123503, Sep. 2024, doi: 10.1016/J.ESWA.2024.123503.

M. Auf der Landwehr, M. Trott, K. von Bülow, and C. von Viebahn, “Pyrrhic victory? Towards a decision support system for simulation projects in industrial practice based on Fuzzy cognitive mapping,” Comput. Ind. Eng., vol. 186, p. 109706, 2023, doi: https://doi.org/10.1016/j.cie.2023.109706.

Y. Kwon and Z. Lee, “A hybrid decision support system for adaptive trading strategies: Combining a rule-based expert system with a deep reinforcement learning strategy,” Decis. Support Syst., vol. 177, p. 114100, 2024, doi: https://doi.org/10.1016/j.dss.2023.114100.

Abdul Karim, “Implementasi Metode Multi-Objective Optimization On The Basis Of Ratio Analysis dalam Seleksi Mahasiswa Program Indonesia Pintar,” Bull. Comput. Sci. Res., vol. 3, no. 5, pp. 351–356, 2023, doi: 10.47065/bulletincsr.v3i5.283.

A. Karim, S. Esabella, M. A. Hanafiah, and ..., “Sistem Pakar Deteksi Penyakit Otitis dengan Perbandingan Metode Certainty Factor, Teorema Bayes, dan Dempster Shafer,” J. Media …, vol. 7, pp. 2003–2013, 2023, doi: 10.30865/mib.v7i4.6595.

A. Karim, S. Esabella, K. Kusmanto, S. Suryadi, and E. Purba, “Penerapan Metode Teorema Bayes Dalam Mendiagnosa Penyakit Autoimun,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 254–263, 2023, doi: 10.47065/bits.v5i1.3407.

S. Pratama, I. Iswandi, A. Sevtian, and T. P. Anjani, “Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma C4.5 dengan CRISP-DM,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 20–14, 2023, doi: 10.30871/jaic.v7i1.4998.

E. F. Wati and B. Rudianto, “Universitas Bina Sarana Informatika 1 Teknik Informatika, Universitas Nusa Mandiri ,2 Jl. Kramat Raya No.98, Senen, Jakarta Pusat 10450 1 Jl,” Raya Jatiwaringin, vol. 11, no. 2, pp. 168–175, 2022.

A. Desiani, S. Yahdin, and D. Rodiah, “Prediksi Tingkat Indeks Prestasi Kumulatif Akademik Mahasiswa dengan Menggunakan Teknik Data Mining,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1237–1244, 2020, doi: 10.25126/jtiik.2020722493.

S. Linawati, S. Nurdiani, K. Handayani, and L. Latifah, “Prediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma Random Forest Dan C4.5,” J. Khatulistiwa Inform., vol. 8, no. 1, pp. 47–52, 2020, doi: 10.31294/jki.v8i1.7827.

M. Bari, S. H. Sitorus, and U. Ristian, “IMPLEMENTASI METODE NAÏVE BAYES PADA APLIKASI PREDIKSI PENYEBARAN WABAH PENYAKIT ISPA ( Studi Kasus : Wilayah Kota Pontianak ),” vol. 06, no. 03, pp. 205–214, 2018.

L. Septiana, “Perancangan Sistem Pakar Diagnosa Penyakit Ispa Dengan Metode Certainty Factor Berbasis Android,” J. TECHNO Nusa Mandiri, vol. XIII, no. 2, p. 89, 2016.

R. C. Menezes et al., “Severe viral lower respiratory tract infections in Brazilian children: Clinical features of a national cohort,” J. Infect. Public Health, vol. 17, no. 1, pp. 1–9, 2024, doi: https://doi.org/10.1016/j.jiph.2023.09.015.

L. Bachtiar and M. Mahradianur, “Analisis Data Mining Menggunakan Metode Algoritma C4.5 Menentukan Penerima Bantuan Langsung Tunai,” J. Inform., vol. 10, no. 1, pp. 28–36, 2023, doi: 10.31294/inf.v10i1.15115.

A. Karim, “Implementation of the Multi-Objective Optimization Method on the Basic of Ratio Analysis ( MOORA ) and Entropy Weighting in New Employee Recruitment,” vol. 5, no. 2, pp. 704–712, 2024, doi: 10.47065/josh.v5i2.4859.

N. Nurliadi and A. Karim, “Sistem Pendukung Keputusan Penerimaan Analis Di Pusat Penelitian Kelapa Sawit Menggunakan Metode Complex Proportional Assessment (Copras),” Bul. Ilm. Inform. Teknol., vol. 2, no. 1, pp. 32–42, 2023.

Dimensions Badge
Published
2024-06-26
How to Cite
Ernawati, A., Sitorus, Z., Aulia, A., & Ayu Ofta. (2024). Application of the C45 Algorithm to Predict Student Academic Scores. Bulletin of Information Technology (BIT), 5(2), 65 - 70. https://doi.org/10.47065/bit.v5i2.1251
Section
Articles