Prediksi Dampak Pembelajaran Hybrid Learning Menggunakan Naive Bayes

  • Yuyun Yusnida Lase Politeknik Negeri Medan, Indonesia
  • Yulia Fatmi * Mail Politeknik Negeri Medan, Indonesia
  • Haryadi Universitas Negeri Medan, Indonesia
  • Santi Prayudani Politeknik Negeri Medan, Indonesia
Keywords: Naïve Bayes, Hybrid Learning, Prediksi, Mahasiswa

Abstract

This research use to predict the impact of hybrid learning on Medan State Polytechnic students. This algorithm was chosen because it has excellent performance in classification compared to other algorithms. Statistical and probabilistic methods are used in the operation of this algorithm to make predictions about what will happen in the future. Technology mastery, level of teacher-student interaction, and mastery of teaching materials are the variables used in this study. The sample data used came from students of the Software Engineering Technology Study Program of Medan State Polytechnic. The prediction results carried out manually with naïve bayes, with training data of 100 (one hundred) students and test data of 1 (one) student, produced a result of 0.012, which indicates an increase in student academic results. The test results were proven using the phyton programming language. The first test results, with 20% test data, resulted in an increase in academic results by 86% around 13 students with an accuracy value of 80%, and the second test, with 40% test data, resulted in an increase in academic results by 92% around 29 students with an accuracy value of 88%.

References

H. Yoshikawa, “Can naive Bayes classifier predict infection in a close contact of COVID-19? A comparative test for predictability of the predictive model and healthcare workers in Japan: Infection Prediction in a Close Contact of COVID-19,” J. Infect. Chemother., vol. 28, no. 6, pp. 774–779, 2022, doi: 10.1016/j.jiac.2022.02.017.

M. Makhin, “Hybrid Learning: Model Pembelajaran pada Masa Pandemi di SD Negeri Bungurasih Waru Sidoarjo,” Mudir J. Manaj. Pendidik., vol. 3, no. 2, pp. 95–103, 2021, doi: 10.55352/mudir.v3i2.312.

A. S. Wahyuni, “Penerapan Model Hybrid Learning,” Indones. J. Educ. Dev., vol. 2, no. November 2021, pp. 292–297, 2021, doi: 10.5281/zenodo.5681376.

T. R. Patil and S. Sherekar, “Performance Analysis of Naive Bayes and J48 Classification Algorithm for Data Classification,” Int. J. Comput. Sci. Appl., vol. 6, pp. 256–261, 2013.

M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” J. EECCIS (Electrics, Electron. Commun. Control. Informatics, Syst., vol. 7, no. 1 SE-Articles, p. pp.59-64, Jul. 2013, doi: 10.21776/jeeccis.v7i1.204.

S. Wang, J. Ren, and R. Bai, “A semi-supervised adaptive discriminative discretization method improving discrimination power of regularized naive Bayes,” Expert Syst. Appl., vol. 225, no. November 2022, p. 120094, 2023, doi: 10.1016/j.eswa.2023.120094.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

S. Cui et al., “Using Naive Bayes Classifier to predict osteonecrosis of the femoral head with cannulated screw fixation,” Injury, vol. 49, no. 10, pp. 1865–1870, 2018, doi: https://doi.org/10.1016/j.injury.2018.07.025.

Z. Geng et al., “A model-free Bayesian classifier,” Inf. Sci. (Ny)., vol. 482, pp. 171–188, 2019, doi: https://doi.org/10.1016/j.ins.2019.01.026.

L. J. Gonçales, K. Farias, L. S. Kupssinskü, and M. Segalotto, “An empirical evaluation of machine learning techniques to classify code comprehension based on EEG data,” Expert Syst. Appl., vol. 203, p. 117354, 2022, doi: https://doi.org/10.1016/j.eswa.2022.117354.

N. Nurhayati aris, “Penerapan Algoritma Naive Bayes Dalam Menentukan Kelayakan Nasabah Pada Koperasi Simpan Pinjam,” J. Comput. Inf. Syst. ( J-CIS ), vol. 1, no. 1, pp. 1–9, 2021, doi: 10.31605/jcis.v2i2.811.

Dimensions Badge
Published
2023-12-24
How to Cite
Yusnida Lase, Y., Fatmi, Y., Haryadi, & Prayudani, S. (2023). Prediksi Dampak Pembelajaran Hybrid Learning Menggunakan Naive Bayes. Bulletin of Information Technology (BIT), 4(4), 425 - 429. https://doi.org/10.47065/bit.v4i4.968
Section
Articles