Analisa Prediksi Hasil Produksi Popok Bayi Metode Naïve Bayes

Analisa Prediksi Hasil Produksi Popok Bayi Metode Naïve Bayes

  • Edy Widodo * Mail Universitas Pelita Bangsa, Indonesia
  • Sifa Fauziah Universitas Pelita Bangsa, Indonesia
  • Asep Arwan Sulaeman Universitas Pelita Bangsa, Indonesia

Abstract

PT. Elleair Interantional Manufacturing Indonesia is a company engaged in the field of manufacturing baby diapers. With the increasing market demand causing an increase in the production process, what is often experienced is that there is often a lack of finish good product to meet consumer de mand due to delays in the production process. To make it easier for companies to look for factors that can increase production result, the authors coduct research with data mining using the naïve bayes method. In this study the training data and testing data were tested using the RapidMiner application with the naïve bayes algorithm where the tested data were 500 data. Testing is done by calculating the value of precision, recall, AUC dan accuracy using the RapidMiner Application and using Microsoft Excel and calculating the final probability of each class to calculate predictions of product result. With the naïve bayes method we can calculate predictions of production result based on data from the previus year as training data to anticipate shortages in production due to factors that can hider the production process. From the results of the analysis obtained factors that affect production result, namely, the number of materia used for the production of 318 data. The human error factor with the category of “No” as much as 305 data also influences because the less the occurrence of human error the production results are also high. Stop delivery factor with the category “No” as many as 299 data, with fewer cases of stop delivery, the more finish good product that can be sold

References

A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, “Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis ( MOOSRA ) dalam Penentuan Lulusan Mahasiswa Terbaik,” vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.

M. Bobbi, K. Nasution, A. Karim, and S. Esabella, “Sistem Pendukung Keputusan Penilaian Kinerja Ketua Program Studi Menerapkan Metode WASPAS dengan Pembobotan ROC,” vol. 4, no. 1, pp. 130–136, 2022, doi: 10.47065/bits.v4i1.1619.

N. Oktari, D. P. Utomo, S. Aripin, and A. Karim, “Penerapan Metode Operational Competitiveness Rating Analysis ( OCRA ) Dalam Penerimaan Karyawan Perjanjian Kerja Waktu Tertentu ( PKWT ),” vol. 3, no. 3, pp. 218–226, 2022, doi: 10.47065/josh.v3i3.1471.

A. Ernawati, “Penerapan Algoritma Entropy Dan Aras Menentukan Penerima Beasiswa Mahasiswa Berprestasi Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 2, pp. 74–84, 2022.

A. Karim and Dkk, “SISTEM PAKAR DIAGNOSA KEGAGALAN KONEKSI TCP/IP PADA JARINGAN KOMPUTER MENGGUNAKAN METODE FORWARD CHAINING,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. I, no. I, pp. 138–144, 2017.

M. Bobbi, K. Nasution, S. Suryadi, and A. Karim, “Sistem Pendukung Keputusan Dalam Rekomendasi Kelayakan nasabah Penerima Kredit Menerapkan Metode MOORA dan MOOSRA,” vol. 4, no. 3, pp. 1284–1292, 2022, doi: 10.47065/bits.v4i3.2610.

Dimensions Badge
Published
2023-03-26
How to Cite
Widodo, E., Fauziah, S., & Arwan Sulaeman, A. (2023). Analisa Prediksi Hasil Produksi Popok Bayi Metode Naïve Bayes. Bulletin of Information Technology (BIT), 4(1), 75 - 80. https://doi.org/10.47065/bit.v4i1.504
Section
Articles