Analisa Data Mining Untuk Prediksi Penyakit Ginjal Kronik Dengan Algoritma Regresi Linier
Abstract
In this study, we evaluate the ability of data mining to predict chronic kidney disease using a linear regression algorithm. We extract features from patient clinical data and apply a linear regression algorithm to build a predictive model. The results showed that our linear regression model was able to predict with high accuracy and could be used as an aid in diagnosing chronic kidney disease. In addition, we also analyze the factors that influence the risk of developing chronic kidney disease and suggest preventive measures that can be taken to reduce the risk of developing the disease. The results of this study can be used by doctors to improve efficiency in diagnosing and preventing chronic kidney disease. In addition, these results can also be used as a basis for further research in the field of data mining and chronic kidney disease. The process of testing the data in this study using a linear regression algorithm is able to provide good results with a Root Mean Squared Error: 0.285 +/- 0.000 and Squared Error: 0.081
+/- 0.234.
References
K. Jurusan and K. Tangerang, “HUBUNGAN KEPATUHAN MENJALANI HEMODIALISIS DAN DUKUNGAN KELUARGA DENGAN KUALITAS HIDUP PASIEN GAGAL GINJAL KRONIK DI RUANG HEMODIALISA RUMAH SAKIT UMUM KABUPATEN TANGERANG,” 2018.
C. Zai and T. Komputer, “IMPLEMENTASI DATA MINING SEBAGAI PENGOLAHAN DATA.”
A. Fahreza, “2022 25 Penerapan Data Mining dengan Metode Single Moving Average dalam Pengolahan Data Penerimaan Siswa Baru.”
K. Puteri and A. Silvanie, “MACHINE LEARNING UNTUK MODEL PREDIKSI HARGA SEMBAKO DENGAN METODE REGRESI LINIER BERGANDA 1),” 2020. [Online]. Available: www.data.jakarta.go.id.
T. Akhir, “Analisa Algoritma Regresi Linear dan Decision Tree Dalam Prediksi Penjualan Produk (Studi Kasus: Lookma Boutique).” [Online]. Available: https://lib.mercubuana.ac.id/
F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 10, no. 1, p. 23, Apr. 2021, doi: 10.23887/janapati.v10i1.31035.
“204-Article Text-389-1-10-20130819”.
“KLASIFIKASI PENYAKIT JANTUNG MENGGUNAKAN PARTICLE SWARM OPTIMIZATION DAN ALGORITMA K-NEAREST NEIGHBORS.”
E. Widodo, “PELITA TEKNOLOGI Prediksi Penjurusan IPA, IPS dan BAHASA dengan Menggunakan Machine Learning Abstrak Informasi Artikel,” Jurnal Pelita Teknologi, vol. 15, no. 1, pp. 37–48.
K. Erwansyah, “J-SISKO TECH Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD Implementasi Data Mining Untuk Menganalisa Hubungan Data Penjualan Produk Bahan Kimia Terhadap Persedian Stok Barang Menggunakan Algoritma FP (Frequent Pattern) Growth Pada PT. Grand Multi Chemicals,” , vol. 30, no. 2, pp. 30–40, 2019.
Copyright (c) 2023 Angga Kurniadi Hermawan, Agung Nugroho, Edora

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


