Analisa Penjualan Produk Kosmetik Dengan Metode Algoritma K-Means Di Toko Erremy

  • Ismasari Nawangsih Universitas Pelita Bangsa, Bekasi, Indonesia
Keywords: Data mining, K-Means Cluste Produk, Pejualan

Abstract

Applying data mining to analyze sales patterns of goods using the k-means algorithm method at the Erremy Shop. Availability of goods, stock of goods and completeness of goods in a shop is a very important element. So that the management process to regulate the availability of inventory is needed to avoid the accumulation of the same goods and is less desirable to customers. This research aims to determine buyer interest in a product so that we can ensure the supply and availability of products that are selling well or not selling well. The benefit of this research is to prevent product stockouts and accumulation of unsold products. The method used in product grouping uses the K-Means Clustering method so that the best-selling and less-selling products can be identified. Product data is grouped based on the similarity of the data so that data with the same value will be in one cluster. With the existence of product stock clusters with each level of stock movement owned, this allows it to be used as a reference in predicting the supply of products according to their needs. The tests carried out in this study were using black box testing.

References

M. Miftakhul and S. Prihandoko, 2017,“Penerapan Algoritma K-Means dan Cure Dalam Menganalisa Pola Perubahan Belanja Dari Retail ke E-Commerce,” vol. 7, no. 2, pp. 44–49.

D. Maharani, M. D. Sena, and I. Management, “International Conference on Social, Sciences and Information Technology,” vol. 4509, pp. 1–7, 2020.

A. Wibowo and A. R. Handoko, “Metode Data Mining Klasterisasi Dengan Analisis Recency Frequency Monetary ( Rfm ) Termodifikasi Segmentation of Customers of Drug Pharmaceutical Product Retail Using Clasterization Mining Data Method Using Modified Monetary Recency Frequency ( Rfm ) Anal,” vol. 7, no. 3, pp. 573–580, 2020, doi: 10.25126/jtiik.202072925.

A. Hariyanto, 2017, Computer BasedTest Dengan PHP MysQL Dan Bootsrap. Yogyakarta: Loko Media.

C. Ramadhana, Y. D. L. W, and K. D. K. W, “Data Mining dengan Algoritma Fuzzy C-Means Clustering Dalam Kasus Penjualan di PT Sepatu Bata,” Semant. 2013, vol. 2013, no. November, pp. 54–60, 2013.

Suyanto,2017, Data Mining. Yogyakarta: Informatika.

Retno Tri vulandari, 2017, Data Mining. Yogyakarta: Gava Media.

M. P. Syamala, 2013,“Analisis Prediksi Churn Dan Segmentasi Pelanggan Speedy Retail Daerah Operasional Bandung Menggunakan Algoritma Decision Tree Dan K-Means,” pp. 32–37.

S. Agustina, D. Yhudo, H. Santoso, N. Marnasusanto, A. Tirtana dan F. Khusnu, 2012, "Clustering Kualitas Beras Berdasarkan Ciri Fisik Menggunakan Metode K-Means," Universitas Brawijaya Malang, Malang.

M. . S. Rosa A.S, 2016, Rekayasa Perangkat Lunak. Bandung: Informatika.

B. Raharjo, 2016, Pemrograman Web. Bandung: Modula.

Rosa A.S M. Shalahuddin, 2013, Rekayasa Perangkat Lunak Terstruktur dan

Berorientasi Objek. Bandung: Informatika.

Simanjuntak, E.C., at al. 2010. “Blackbox Testing”. Kompasiana.com. http://www.kompasiana.com/elisa_grace_heriberty/blackboxtesting_550051c7a333115b735107d b

R. Mythily, A. Banu, and S. Raghunathan,2014, “Clustering models for data stream mining,” Procedia Comput. Sci., vol. 46, no. Icict , pp. 619–626, 2015.

T. H. Sardar and Z. Ansari,2018, “An analysis of Map Reduce efficiency in document clustering using parallel K-means algorithm,” Futur. Comput. Informatics J., pp. 1–10, 2018.

Sulastri H, Gufroni AI. 2017,Penerapan Data Mining Dalam Pengelompokan Penderita Thalassaemia. Jurnal Teknologi dan Sistem Informasi. Sep 26;3(2):299-305.

Gurunescu, F.,2011, Data Mining Consepts, Models and Techniques (Volume 12 ed.). Verlag Berlin Heidelberg.

F. Gullo, 2015,“From patterns in data to knowledge discovery: What data mining can do,” Phys. Procedia, vol. 62, pp. 18–22.

https://sis.binus.ac.id/2022/01/31/clustering-algoritma-k-mean.

Dimensions Badge
Published
2023-04-10
How to Cite
Nawangsih, I. (2023). Analisa Penjualan Produk Kosmetik Dengan Metode Algoritma K-Means Di Toko Erremy. Bulletin of Information Technology (BIT), 4(1), 140 - 145. https://doi.org/10.47065/bit.v4i1.468
Section
Articles