Penerapan Algoritma K-Means dan Apriori dalam Manajemen Stok UMKM Toko Sembako Berbasis Analisis BCG Matrix

  • Virdyra Tasril * Mail Politeknik Negeri Medan, Indonesia
  • Daffa Olivian Politeknik Negeri Medan, Indonesia
  • Randy Hasmajaya Simarmata Politeknik Negeri Medan, Indonesia
Keywords: K-Means Clustering, Association Rules Apriori, UMKM, Stok, BCG-Matrix

Abstract

This study aims to analyze purchasing patterns at Toko Sembako HAS in Medan City, Medan Polonia District, using a Hybrid Data Mining approach that combines K-Means and Apriori algorithms. The dataset consists of 75,294 items sold over a 7-month period. The research workflow began with problem identification, literature review, data collection, and pre-processing, followed by algorithm implementation to produce product clustering and association patterns. Data normalization was performed using the Min-Max method to align the scales of Quantity and Profit, ensuring accurate K-Means clustering. The K-Means clustering combined with BCG Matrix categorized products into Stars, Cash Cows, Question Marks, and Dogs. Products such as Indomie and Mie Sedap were classified as Stars with high sales volume and medium-high profitability, while Minyak Curah and Beras were Cash Cows with moderate sales volume but the highest profitability. The Apriori algorithm revealed hidden purchasing patterns, with the highest Lift Ratio of 1.48 observed for the pair Pampers S and Mie Sedap, indicating a strong correlation within the young family segment. The hybrid approach provides strategic insights: K-Means supports inventory management and product segmentation, while Apriori guides marketing strategies such as product bundling and store layout. However, combinations of Cash-Cows and Question Marks yielded Lift Ratios below 1, indicating insignificant associations. The results demonstrate that this hybrid approach enhances understanding of consumer behavior and supports data-driven decisions to optimize sales and profitability.

References

I. M. D. C. Putra, G. M. A. Sasmita, and N. K. D. Rusjayanthi, “Analisa Pola Belanja Konsumen serta Prediksi Stok Barang Berbasis Web,” J. Edukasi dan Penelit. Inform., vol. 9, no. 3, p. 415, 2023, doi: 10.26418/jp.v9i3.67154.

I. Lisyukri and M. Deswina, “Implementasi Algoritma K-Means Clustering untuk Pengelompokan Pola Permintaan Barang dalam Sistem Manajemen Inventori PT Semen Padang,” J. Ris. Sist. Inf. dan Tek. Inform., vol. 3, no. 4, 2025.

A. H. A. N. Karsa and A. R. Hidayat, “Metode Algoritma K-Means Untuk Clustering Data Produk Paling Laku Pada Toko Tono Grosir Plumbon Cirebon,” Syntax Lit. ; J. Ilm. Indones., vol. 7, no. 9, pp. 15984–15996, 2024, doi: 10.36418/syntax-literate.v7i9.15144.

B. D. Oktavian, I. Lumintu, and S. Amar, “Optimalisasi Strategi Product Bundling melalui Pemetaan Pola Peminatan dan Pola Penjualan Produk menggunakan K-Means Clustering dan Apriori,” J. Integr. Syst., vol. 8, no. 1, pp. 26–41, 2025, doi: 10.28932/jis.v8i1.11503.

C. Y. Hung and C. C. Wang, “An Approach for Multi-Item Product Sales Forecasting Based on Advancing the BCG Matrix with Matrix-Clustering and Time Modeling Techniques,” Systems, vol. 12, no. 10, 2024, doi: 10.3390/systems12100388.

Ahmed Arifi Hilman Rahman and Zaehol Fatah, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Menentukan Persediaan Barang,” J. Ilm. Multidisiplin Ilmu, vol. 2, no. 1, pp. 106–116, 2025, doi: 10.69714/2rkam171.

W. O. Mardiana, N. A., & Windari, “G-Tech : Jurnal Teknologi Terapan,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 186–195, 2024.

A. Azzam, A. Irma Purnamasari, and I. Ali, “Implementasi Algoritma K-Means Clustering Untuk Analisis Persebaran Umkm Di Jawa Barat,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3062–3070, 2024, doi: 10.36040/jati.v8i3.8450.

W. Ananda, I. Hartami Santi, and S. Kirom, “Penerapan Algoritma K-Means Clustering Dalam Pengelompokan Arsip Skck,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 861–867, 2022, doi: 10.36040/jati.v6i2.5762.

J. Jabbar, “Sistem Informasi Stok Barang Menggunakan Metode Clustering Kmeans (Studi Kasus Rmd Store),” INFOTECH J., vol. 8, no. 1, pp. 70–75, 2022, doi: 10.31949/infotech.v8i1.2280.

S. R. Agustin, I. Purnamasari, and B. N. Sari, “Implementasi K-Means Untuk Pengelompokan Kategori Penjualan Barang Berbasis Web,” J. Informatics Manag. Inf. Technol., vol. 5, no. 3, pp. 167–176, 2025, doi: 10.47065/jimat.v5i3.610.

L. Azzahra and Amru Yasir, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” J. Ilmu Komput. dan Sist. Inf., vol. 3, no. 1, pp. 1–10, 2024, doi: 10.70340/jirsi.v3i1.88.

F. Nasari and S. Darma, “Seminar Nasional Teknologi Informasi dan Multimedia 2015 PENERAPAN K-MEANS CLUSTERING PADA DATA PENERIMAAN MAHASISWA BARU (STUDI KASUS : UNIVERSITAS POTENSI UTAMA),” pp. 6–8, 2015.

D. Prayudi and R. Oktapiani, “Analisis Matrik BCG Terhadap Portofolio Produk Untuk Mengembangkan Strategi Pasar,” Swabumi, vol. 10, no. 1, pp. 1–5, 2022, doi: 10.31294/swabumi.v10i1.11163.

A. Nur Rahmi and Yosaphat Ananda Mikola, “Implementasi Algoritma Apriori Untuk Menentukan Pola Pembelian Pada Customer (Studi Kasus : Toko Bakoel Sembako),” Inf. Syst. J., vol. 4, no. 1, pp. 14–19, 2021, doi: 10.24076/infosjournal.2021v4i1.561.

N. Prasista, S. Kacung, C. Ananggadipa Swastyastu, and A. Vega Vitianingsih, “Penerapan Algoritma Apriori Untuk Prediksi Penjualan Pt. Delima Pandu Berjaya,” J. Mnemon., vol. 7, no. 1, pp. 90–98, 2024, doi: 10.36040/mnemonic.v7i1.9428.

A. Erfina, Melawati, and N. Destria Arianti, “Penerapan Metode Data Mining Terhadap Data Transaksi Penjualan Menggunakan Algoritma Apriori,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 2, no. 3, pp. 14–22, 2020, doi: 10.52005/jursistekni.v2i3.62.

A. A. Firdaus, N. Iksan, D. N. Sadiah, L. Sagita, and D. Setiawan, “Penerapan Algoritma Apriori untuk Prediksi Kebutuhan Suku Cadang Mobil,” J. Sist. dan Teknol. Inf., vol. 9, no. 1, p. 13, 2021, doi: 10.26418/justin.v9i1.41151.

P. P. Allorerung, A. Erna, M. Bagussahrir, and S. Alam, “Analisis Performa Normalisasi Data untuk Klasifikasi K-Nearest Neighbor pada Dataset Penyakit,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 9, no. 3, pp. 178–191, 2024, doi: 10.14421/jiska.2024.9.3.178-191.

Ita Faikotul Mafiroh, Arri Maulida Rakhmawati, Desi Dwi Ruswanti, and Yoiz Showa Shafrani, “Analisis Boston Consulting Group (BCG) terhadap Produk Pegadaian,” MENAWAN J. Ris. dan Publ. Ilmu Ekon., vol. 3, no. 3, pp. 19–31, 2025, doi: 10.61132/menawan.v3i3.1383.

Dimensions Badge
Published
2025-12-25
How to Cite
Tasril, V., Olivian, D., & Hasmajaya Simarmata, R. (2025). Penerapan Algoritma K-Means dan Apriori dalam Manajemen Stok UMKM Toko Sembako Berbasis Analisis BCG Matrix. Bulletin of Information Technology (BIT), 6(4), 439 - 447. https://doi.org/10.47065/bit.v6i4.2375
Section
Articles