Teknik Data Mining Dengan Menggunakan Algoritma Decision Tree Untuk Mengetahui Pola Pemahaman Mahasiswa Pada Matakuliah Pemrograman
Abstract
Medan State Polytechnic, as one of the leading vocational universities in Medan City, plays a crucial role in producing graduates who are ready to work and possess applied competencies according to industry needs. One of the strategic departments is the Computer Engineering and Informatics Department, which focuses on developing students' abilities in technology and programming. Programming courses are an important foundation in developing students' analytical and logical skills. However, many students still experience difficulties in understanding basic programming concepts, which results in low academic achievement and learning motivation. This study aims to identify patterns of student understanding in programming courses using the Decision Tree algorithm as a classification method. Through a data mining approach, this study attempts to extract hidden patterns from students' academic data to identify factors that influence their level of understanding. The Decision Tree algorithm was chosen because it is able to produce classification models that are easy to understand and interpret, and is effective in handling both categorical and numerical data. The research data was processed using Google Collaboratory with the help of the scikit-learn library. The testing process was carried out through the formation of a classification model, decision tree visualization, and confusion matrix analysis to measure model performance. Based on the test results, an accuracy value of 50% and an F1-score of 51.68% were obtained, indicating that the Decision Tree model has a good ability to predict and classify students' level of understanding of programming courses. Overall, this research provides an important contribution to the development of data-based learning strategies in vocational education environments. Through the results obtained, lecturers are expected to be able to adjust teaching methods according to student characteristics and abilities, so that the learning process becomes more adaptive, effective, and has a positive impact on improving student understanding of programming courses.
References
[2] M. Fajar, S. Adam, B. Putra, S. I. Puteri, A. Fajrissiddiq, and L. Sani, “Eksplorasi dan Analisis Data Mining untuk Prediksi Pola Konsumen Menggunakan Teknik Klasifikasi dan Clustering,” in SENTIMETER (Seminar Nasional Teknologi Informasi, Mekatronika dan Ilmu Komputer) Universitas Nusa Putra, 17 Mei 2025 Eksplorasi, 2025.
[3] F. Akbar, H. W. Saputra, A. K. Maulaya, M. F. Hidayat, and Rahmaddeni, “Implementation of Decision Tree Algorithm C4.5 and Support Vector Regression for Stroke Disease Prediction,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 2, no. 2, pp. 61–67, 2022, doi: 10.1088/1742-6596/1641/1/012025.
[4] K. Khotimah, “Teknik Data Mining menggunakan Algoritma Decision Tree (C4.5) untuk Prediksi Seleksi Beasiswa Jalur KIP pada Universitas Muhammadiyah Kotabumi,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, pp. 145–152, 2022, doi: 10.30873/simada.v4i2.3064.
[5] F. Faisal, H. Dhika, and H. Veris, “Penerapan Algoritma Decision Tree Dalam Penjualan Handphone,” JRKT (Jurnal Rekayasa Komputasi Ter., vol. 1, no. 04, pp. 239–246, 2021, doi: 10.30998/jrkt.v1i04.6157.
[6] S. F. Damanik, A. Wanto, and I. Gunawan, “Penerapan Algoritma Decision Tree C4.5 untuk Klasifikasi Tingkat Kesejahteraan Keluarga pada Desa Tiga Dolok,” J. Krisnadana, vol. 1, no. 2, pp. 21–32, 2022, doi: 10.58982/krisnadana.v1i2.108.
[7] I. Iddrus and D. W. Sari, “Penerapan Data Mining Menggunakan Algoritma Decision Tree C4.5 Untuk Memprediksi Mahasiswa Drop Out Di Universitas Wiraraja,” J. Adv. Res. Inform., vol. 1, no. 02, pp. 1–7, 2023, doi: 10.24929/jars.v1i02.2684.
[8] Dwita Elisa Sinaga, Agus Perdana Windarto, and Rizki Alfadillah Nasution, “Analisis Data Mining Algoritma Decision Tree Pada Prediksi Persediaan Obat (Studi Kasus : Apotek Franch Farma),” KLIK Kaji. Ilm. Inform. dan Komput., vol. 2, no. 4, pp. 123–131, 2022, doi: 10.30865/klik.v2i4.328.
[9] U. Suriani, “Penerapan Data Mining untuk Memprediksi Tingkat Kelulusan Mahasiswa Menggunakan Algoritma Decision Tree C4.5,” Journalcisa, vol. 3, no. 2, pp. 55–66, 2023, [Online]. Available: http://jesik.web.id/index.php/jesik/article/view/91
[10] D. P. Indini, Mesran, and Dito Putro Utomo, “Penerapan Data Mining Dalam Pengelompokan Data Reseller di Telkomsel Authorized Partner (TAP) Deli Tua Dengan Algoritma K-Means,” J. Ilm. Media Sisfo, vol. 17, no. 2, pp. 189–202, 2023, doi: 10.33998/mediasisfo.2023.17.2.1391.
[11] D. P. Indini, S. R. Siburian, Nurhasanah, and D. P. Utomo, “Implementasi Algoritma DBSCAN untuk Clustering Seleksi Penentuan Mahasiswa yang Berhak Menerima Beasiswa Yayasan,” in Prosiding Seminar Nasional Sosial, Humaniora, dan Teknologi, 2022, pp. 325–331.
[12] Mesran, M. Syahrizal, Sarwandi, S. Aripin, D. P. Utomo, and A. Karim, “A comparison of the performance of data mining classification algorithms on medical datasets with the application of data normalization,” AIP Conf. Proc., vol. 3048, no. 1, 2024.
[13] Zahrudin, A. I. Purnamasari, and I. Ali, “Analisis Tren Penjualan Fashion Import Menggunakan Algoritma Fp-Growth Pada Toko Air Gaul,” J. Kecerdasan Buatan dan Teknol. Inf., vol. 3, no. 2, pp. 75–84, 2023, doi: 10.69916/jkbti.v3i2.127.
[14] W. A. Firmansyach, U. Hayati, and Y. Arie Wijaya, “Analisa Terjadinya Overfitting Dan Underfitting Pada Algoritma Naive Bayes Dan Decision Tree Dengan Teknik Cross Validation,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 262–269, 2023, doi: 10.36040/jati.v7i1.6329.
[15] H. P. Herlambang, F. Saputra, M. H. Prasetiyo, D. Puspitasari, and D. Nurlaela, “Perbandingan Klasifikasi Tingkat Penjualan Buah di Supermarket dengan Pendekatan Algoritma Decision Tree, Naive Bayes dan K-Nearest Neighbor,” J. Insa. - J. Inf. Syst. Manag. Innov., vol. 3, no. 1, pp. 21–28, 2023, doi: 10.31294/jinsan.v3i1.2097.
[16] S. B. Bulkisah, R. Astuti, and A. Bahtiar, “Implementasi Data Mining Algoritma Decision Tree Untuk Klasifikasi Status Gizi Balita Di Kecamatan Ciledug,” J. Ilm. Inform. Komput., vol. 29, no. 1, pp. 1–12, 2024, doi: 10.35760/ik.2024.v29i1.10346.
[17] M. Rizaludin and F. Fikriah, “Prediksi Perilaku Pelanggan Pada Produk UMKM Batik Dengan Menggunakan Algoritma Decision Tree,” Teknomatika, vol. 13, no. 02, pp. 8–16, 2023.
[18] M. R. Qisthiano, P. A. Prayesy, and I. Ruswita, “Penerapan Algoritma Decision Tree dalam Klasifikasi Data Prediksi Kelulusan Mahasiswa,” G-Tech J. Teknol. Terap., vol. 7, no. 1, pp. 21–28, 2023, doi: 10.33379/gtech.v7i1.1850.
[19] A. R. Raharja, Jayadi, A. Pramudianto, and Y. Muchsam, “Penerapan Algoritma Decision Tree dalam Klasifikasi Data ‘Framingham’ Untuk Menunjukkan Risiko Seseorang Terkena Penyakit Jantung dalam 10 Tahun Mendatang,” Technol. J., vol. 1, no. 1, 2024, doi: 10.62872/cwgzp962.
[20] Y. L. Fatma and N. Rochmawati, “Prediksi Siswa Putus Sekolah Menggunakan Algoritma Decision Tree C4.5,” J. Informatics Comput. Sci., vol. 5, no. 04, pp. 486–493, 2024, doi: 10.26740/jinacs.v5n04.p486-493.
Copyright (c) 2025 Sri Novida Sari, Putri Annisa, An Nisa Dian Rahma, Rama Prameswara Ritonga, Dito Putro Utomo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


