Application of The Naïve Bayes Algorithm for Employee Performance Prediction Based on SIMPEG at TVRI East Kalimantan Station
Abstract
Employee performance evaluation is a crucial aspect of public organizational management, including at the public broadcasting institution TVRI East Kalimantan Station. To date, attendance indicators obtained from the Employee Management Information System (SIMPEG) have often been used as the primary benchmark, as the data are objectively and structurally available. However, a single attendance-based approach risks overlooking more substantive aspects of work achievement. Therefore, this study integrates attendance data with the Employee Performance Targets (SKP) to construct a more representative performance label. The method employed is a classification approach using the Naïve Bayes (GaussianNB) algorithm. The research dataset consists of attendance records (normal attendance, leave, official duty, study assignment, early departure, absence, and total working days) and quantized SKP scores. Performance labels were generated using a composite score (0.30 × attendance percentage + 0.70 × normalized SKP), which was then categorized into three classes: Excellent, Good, and Needs Improvement. The model was trained using SIMPEG and SKP data that had undergone preprocessing, data partitioning, and class balancing. Experimental results show that the model achieved an accuracy of 0.83, with a precision of 0.86, recall of 0.84, and F1-score of 0.83 on the test data. These results indicate that the model can consistently recognize employee performance patterns across all categories. Practically, this study offers a simple, efficient, and easily implementable predictive framework to support more objective processes of coaching, monitoring, and reward allocation within TVRI East Kalimantan Station.
References
A. Géron, Machine Learning with Scikit-Learn and TensorFlow. Jakarta, Indonesia: Elex Media, 2020.
D. W. Lubis and J. Veri, “Pengaruh Sistem Informasi Manajemen Kepegawaian terhadap Kualitas Pelayanan
Administrasi Kepegawaian: Systematic Review,” J. Manajemen Informatika Jayakarta, vol. 5, no. 2, pp. 135–141, Apr. 2025.
N. Insani, Signifikansi Budaya Organisasi, Semangat Kerja dan Kepuasan Kerja Terhadap Kinerja Pegawai pada
LPP TVRI Sulawesi Selatan, M.S. thesis, Univ. Muhammadiyah Makassar, 2024.
B. H. Pangestu, “Data Mining Menggunakan Algoritma Naïve Bayes Classifier untuk Evaluasi Kinerja Karyawan,”
J. Riset Matematika, vol. 3, no. 2, pp. 177–184, Dec. 2023.
M. R. Khoirudin, M. Hasbi, B. Widada, K. Akhyar, and K. Sandradewi, “Klasifikasi Kelayakan Pegawai Kontrak
Menjadi Pegawai Tetap Menggunakan Metode Naïve Bayes,” J. TIKomSiN, vol. 12, no. 2, pp. 7–15, Oct. 2024.
F. Ramadhan and H. D. Bhakti, “Klasifikasi Penilaian Kinerja Karyawan Menggunakan Algoritme Naïve Bayes
(Studi Kasus PT. As Sabar Sukses Berkah),” Kohesi: J. Multidisiplin Saintek, vol. 4, no. 2, pp. 33–42, Jul. 2024.
S. Rukmini, Nurchim, and D. Hartanti, “Pendekatan Naïve Bayes dalam Klasifikasi Penilaian Kinerja Pegawai ASN
di Sragen,” JATI: J. Mahasiswa Tek. Inform., vol. 9, no. 2, pp. 2811–2820, Apr. 2025.
A. Arifin and N. Nuraini, “Implementasi Naïve Bayes Classifier dalam Memprediksi Kelulusan Mahasiswa,” J.
Teknol. Inf. dan Ilmu Komputer, vol. 8, no. 3, pp. 245–253, Sep. 2022.
Y. S. Sari, L. Fitriani, and M. Yusuf, “Perbandingan Algoritma Naïve Bayes dan C4.5 dalam Prediksi Keputusan
Karyawan untuk Meninggalkan Perusahaan,” J. Ilm. Tek. & Rekayasa, vol. 10, no. 1, pp. 55–62, 2023.
D. Handayani and R. Pratama, “Studi Perbandingan Algoritma Naïve Bayes dan Decision Tree pada Penilaian
Kinerja Karyawan,” J. Komput. dan Inform., vol. 6, no. 1, pp. 44–52, 2023.
R. Wati and M. Hidayat, “Pemanfaatan Sistem Informasi Kepegawaian dalam Peningkatan Kinerja Aparatur Sipil
Negara,” J. Inform. Publik, vol. 7, no. 1, pp. 55–64, 2023.
G. P. Santos and M. Oliveira, “Predicting Employee Productivity with Naïve Bayes: A Case Study,” Int. J. Comput.
Appl., vol. 184, no. 16, pp. 12–18, 2022.
M. Oliveira and J. Costa, “Application of Naïve Bayes Classifier in Academic Performance Evaluation,” in Proc.
Int. Conf. Educ. Data Mining, 2022, pp. 221–228.
L. Ningsih and R. Pratama, “Penerapan Algoritma Naïve Bayes untuk Prediksi Prestasi Akademik Mahasiswa,”
J. Sist. Inf. dan Komputasi, vol. 12, no. 2, pp. 88–96, 2021.
M. Yusuf and R. Arifin, “Model Prediksi Kelulusan Mahasiswa Menggunakan Naïve Bayes Berbasis Web,” J.
Inform. dan Teknol., vol. 9, no. 2, pp. 133–140, 2021.
A. Yusnita, S. Lailiyah, and K. Saumahudi, “Penerapan Algoritma Naïve Bayes untuk Penerimaan Peserta Didik
Baru,” Informatika, vol. 11, no. 1, pp. 11–16, 2020.
A. Azahari, Yulindawati, D. Rosita, and S. Mallala, “Komparasi Data Mining Naïve Bayes dan Neural Network
Memprediksi Masa Studi Mahasiswa S1,” J. Teknol. Inf. dan Ilmu Komputer (JTIIK), vol. 7, no. 3, pp. 443–452, Jun. 2020.
D. Nuryansah and M. Ary, “Implementasi Algoritma Naïve Bayes Classifier untuk Memprediksi Tingkat
Produktivitas Kinerja Karyawan,” Jurnal Informatika UMT (JIKA), 2024.
Copyright (c) 2025 Ishmah Hanani, Siti Lailiyah, Yulindawati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


