Comparative Analysis of ARIMA and LSTM Methods for Forecasting Healthcare Service Costs in Advanced Referral Healthcare Facilities in Bogor City

  • Rizal Rizal Ashari Nampira * Mail Universitas Terbuka, Indonesia
  • Jenal Mutakin Sambas BPJS Kesehatan , Indonesia
  • Ika Nur Laily Fitriana Universitas Terbuka, Indonesia
  • Liyu Adhi Kasari Sulung Universitas Indonesia, Indonesia

Abstract

The National Health Insurance (JKN) program, managed by BPJS Kesehatan, has experienced a significant increase in healthcare service costs, particularly at Advanced Referral Healthcare Facilities (FKRTL). This study aims to compare the forecasting accuracy of ARIMA and Long Short-Term Memory (LSTM) methods in predicting healthcare service costs in FKRTL Bogor from January 2014 to October 2024. The data, sourced from BPJS Kesehatan Branch Bogor, were analyzed using time series approaches. Model evaluation was conducted using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Results show that for 80% of training data, LSTM produced a MAPE of 8.85% and RMSE of IDR 6.98 billion, slightly outperforming ARIMA (0,1,1) with MAPE of 10.28% and RMSE of IDR 6.67 billion. For the 20% testing data, LSTM demonstrated significantly better accuracy, with an MAPE of 12.97% and RMSE of IDR 15.52 billion, compared to ARIMA’s MAPE of 24.22% and RMSE of IDR 30.76 billion. Therefore, LSTM is considered more effective for short- to medium-term forecasting of JKN healthcare costs, particularly when dealing with complex and non-linear patterns.

References

Afrisia, S. P., Hana, F. M., & Wahyudin, W. C. (2024). Implementasi Metode Long Short Term Memory (LSTM) pada Chatbot Kesehatan Mental Mahasiswa. Sainteks, 21(2), 107. https://doi.org/10.30595/sainteks.v21i2.23869

Arumsari, I., & Meliala, A. (2019). UTILIZATION REVIEW PADA FASILITAS KESEHATAN RUJUKAN TINGKAT LANJUTAN BADAN PENYELENGGARA JAMINAN SOSIAL (BPJS) KESEHATAN KANTOR CABANG SLEMAN. Jurnal Kebijakan Kesehatan Indonesia, 08(04), 196–201.

Badan Pusat Statistik. (2023). Profil Statistik Kesehatan 2023. 7.

Cahyani, J., Mujahidin, S., & Fiqar, T. P. (2023). Implementasi Metode Long Short Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(2), 346. https://doi.org/10.26418/justin.v11i2.57395

Cheng, N., & Kuo, A. (2020). Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time. Studies in Health Technology and Informatics, 272, 199–202. https://doi.org/10.3233/SHTI200528

Duan, J., Gong, Y., Luo, J., & Zhao, Z. (2023). Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36620-4

Hartini, Insani, F., Novriyanto, & Sanjaya, S. (2022). Impelmentasi Long Short Term Memory Neural Network untuk Prediksi Indeks Harga Perdagangan Besar. In Seminar Nasional Teknologi Informasi.

Hyndman, R., & Athanasopoulus, G. (2021). Forecasting: Principles and Practice (03 ed.). OText.

Kementerian Kesehatan. (2022). PROFIL KESEHATAN INDONESIA 2022.

Pandji, B., Indwiarti, & Rohmawati, A. (2019). PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MODEL ARIMA DAN ARTIFICIAL NEURAL NETWORK. Indonesia Journal of Computing, 04(2), 189–198. https://doi.org/10.21108/indojc.2019.4.2.344

Rachmawati, A. K. (2020). Peramalan Penyebaran Jumlah Kasus Covid19 Provinsi Jawa Tengah dengan Metode ARIMA. Zeta - Math Journal, 6(1), 11–16. https://doi.org/10.31102/zeta.2021.6.1.11-16

Setiawan, H., Utami, E., & Al Fatta, H. (2020). Penerapan Arima Dan Artificial Neural Network Untuk Prediksi Penderita DBD Di Kabupaten Sragen. Majalah Ilmiah Bahari Jogja, 18(2), 64–78. https://doi.org/10.33489/mibj.v18i2.220

Souza, I. L., & Dantas, D. O. (2024). Cardiac Arrhythmia Detection in Electrocardiogram Signals with CNN-LSTM. International Conference on Pattern Recognition Applications and Methods, 1, 304–310. https://doi.org/10.5220/0012362600003654

Taslim, D. G., & Murwantara, I. M. (2024). Comparative analysis of ARIMA and LSTM for predicting fluctuating time series data. Bulletin of Electrical Engineering and Informatics, 13(3), 1943–1951. https://doi.org/10.11591/eei.v13i3.6034

Umam, K. (2023). MIND (Multimedia Artificial Intelligent Networking Database Perbandingan Metode ARIMA dan LSTM pada Prediksi Jumlah Pengunjung Perpustakaan. Journal MIND Journal | ISSN, 8(2), 119–129. https://doi.org/10.26760/mindjournal.v8i2.119-129

WHO. (2022). Global spending on health Rising to the pandemic’s challenges. https://www.who.int/publications/i/item/9789240064911

Dimensions Badge
Published
2025-12-14
How to Cite
Rizal Ashari Nampira, R., Mutakin Sambas, J., Nur Laily Fitriana, I., & Adhi Kasari Sulung, L. (2025). Comparative Analysis of ARIMA and LSTM Methods for Forecasting Healthcare Service Costs in Advanced Referral Healthcare Facilities in Bogor City. Bulletin of Information Technology (BIT), 6(4), 16 - 22. https://doi.org/10.47065/bit.v7i1.2278
Section
Articles