Comparative Analysis of ARIMA and LSTM Methods for Forecasting Healthcare Service Costs in Advanced Referral Healthcare Facilities in Bogor City
Abstract
The National Health Insurance (JKN) program, managed by BPJS Kesehatan, has experienced a significant increase in healthcare service costs, particularly at Advanced Referral Healthcare Facilities (FKRTL). This study aims to compare the forecasting accuracy of ARIMA and Long Short-Term Memory (LSTM) methods in predicting healthcare service costs in FKRTL Bogor from January 2014 to October 2024. The data, sourced from BPJS Kesehatan Branch Bogor, were analyzed using time series approaches. Model evaluation was conducted using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Results show that for 80% of training data, LSTM produced a MAPE of 8.85% and RMSE of IDR 6.98 billion, slightly outperforming ARIMA (0,1,1) with MAPE of 10.28% and RMSE of IDR 6.67 billion. For the 20% testing data, LSTM demonstrated significantly better accuracy, with an MAPE of 12.97% and RMSE of IDR 15.52 billion, compared to ARIMA’s MAPE of 24.22% and RMSE of IDR 30.76 billion. Therefore, LSTM is considered more effective for short- to medium-term forecasting of JKN healthcare costs, particularly when dealing with complex and non-linear patterns.
References
Afrisia, S. P., Hana, F. M., & Wahyudin, W. C. (2024). Implementasi Metode Long Short Term Memory (LSTM) pada Chatbot Kesehatan Mental Mahasiswa. Sainteks, 21(2), 107. https://doi.org/10.30595/sainteks.v21i2.23869
Arumsari, I., & Meliala, A. (2019). UTILIZATION REVIEW PADA FASILITAS KESEHATAN RUJUKAN TINGKAT LANJUTAN BADAN PENYELENGGARA JAMINAN SOSIAL (BPJS) KESEHATAN KANTOR CABANG SLEMAN. Jurnal Kebijakan Kesehatan Indonesia, 08(04), 196–201.
Badan Pusat Statistik. (2023). Profil Statistik Kesehatan 2023. 7.
Cahyani, J., Mujahidin, S., & Fiqar, T. P. (2023). Implementasi Metode Long Short Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional. Jurnal Sistem Dan Teknologi Informasi (JustIN), 11(2), 346. https://doi.org/10.26418/justin.v11i2.57395
Cheng, N., & Kuo, A. (2020). Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time. Studies in Health Technology and Informatics, 272, 199–202. https://doi.org/10.3233/SHTI200528
Duan, J., Gong, Y., Luo, J., & Zhao, Z. (2023). Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36620-4
Hartini, Insani, F., Novriyanto, & Sanjaya, S. (2022). Impelmentasi Long Short Term Memory Neural Network untuk Prediksi Indeks Harga Perdagangan Besar. In Seminar Nasional Teknologi Informasi.
Hyndman, R., & Athanasopoulus, G. (2021). Forecasting: Principles and Practice (03 ed.). OText.
Kementerian Kesehatan. (2022). PROFIL KESEHATAN INDONESIA 2022.
Pandji, B., Indwiarti, & Rohmawati, A. (2019). PERBANDINGAN PREDIKSI HARGA SAHAM DENGAN MODEL ARIMA DAN ARTIFICIAL NEURAL NETWORK. Indonesia Journal of Computing, 04(2), 189–198. https://doi.org/10.21108/indojc.2019.4.2.344
Rachmawati, A. K. (2020). Peramalan Penyebaran Jumlah Kasus Covid19 Provinsi Jawa Tengah dengan Metode ARIMA. Zeta - Math Journal, 6(1), 11–16. https://doi.org/10.31102/zeta.2021.6.1.11-16
Setiawan, H., Utami, E., & Al Fatta, H. (2020). Penerapan Arima Dan Artificial Neural Network Untuk Prediksi Penderita DBD Di Kabupaten Sragen. Majalah Ilmiah Bahari Jogja, 18(2), 64–78. https://doi.org/10.33489/mibj.v18i2.220
Souza, I. L., & Dantas, D. O. (2024). Cardiac Arrhythmia Detection in Electrocardiogram Signals with CNN-LSTM. International Conference on Pattern Recognition Applications and Methods, 1, 304–310. https://doi.org/10.5220/0012362600003654
Taslim, D. G., & Murwantara, I. M. (2024). Comparative analysis of ARIMA and LSTM for predicting fluctuating time series data. Bulletin of Electrical Engineering and Informatics, 13(3), 1943–1951. https://doi.org/10.11591/eei.v13i3.6034
Umam, K. (2023). MIND (Multimedia Artificial Intelligent Networking Database Perbandingan Metode ARIMA dan LSTM pada Prediksi Jumlah Pengunjung Perpustakaan. Journal MIND Journal | ISSN, 8(2), 119–129. https://doi.org/10.26760/mindjournal.v8i2.119-129
WHO. (2022). Global spending on health Rising to the pandemic’s challenges. https://www.who.int/publications/i/item/9789240064911
Copyright (c) 2025 Rizal Nampira

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


