Sentiment Analysis of User Reviews of Kitalulus Job Search App on Google Play Store Using Machine Learning

  • Astrid Ayuzi Putri Hendri Hariadi * Mail Universitas Bina Insan, Indonesia
  • Bunga Intan Universitas Bina Insan, Indonesia
  • Armanto Universitas Bina Insan, Indonesia
Keywords: Sentiment Analysis; Kita Lulus Application; Google Play Store; Machine Learning

Abstract

This study seeks to assess the sentiment of user reviews for the "KitaLulus" job search app found on the Google Play Store, utilizing Machine Learning techniques. Given the intensifying competition within the job market, this application serves as a crucial resource for job seekers in Indonesia. The study employs a sentiment analysis method to categorize user reviews into three groups: positive, negative, and neutral. The dataset comprises 20,000 reviews in Indonesian gathered from the Google Play Store. The methodologies used in this study include K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Artificial Neural Network (ANN), Logistic Regression, and Naïve Bayes. The findings indicate that various algorithms demonstrate different levels of accuracy in sentiment classification. It is anticipated that the outcomes of this analysis will offer valuable insights to developers about the quality and effectiveness of the "KitaLulus" application, while also assisting users in making informed decisions prior to utilizing the app. Additionally, this research contributes to the domain of sentiment analysis, particularly concerning job search applications in Indonesia.

References

V. M. Hidayah, “Pemodelan Teknologi dalam Aplikasi KitaLulus untuk Lowongan Pekerjaan Menggunakan Metode Technology Acceptance Model ( TAM ),” vol. 5, no. 3, pp. 2801–2812, 2024.

I. Iwandini, A. Triayudi, and G. Soepriyono, “Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 543–550, 2023, doi: 10.47065/josh.v4i2.2937.

A. G. Tando and M. I. Irawan, “Analisis Dinamika Harga Saham yang Dipengaruhi oleh Analisis Sentimen di Media Sosial Menggunakan Algoritma Support Vector Machine,” J. Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.107080.

A. E. Sari, S. Widowati, and K. M. Lhaksmana, “Klasifikasi Ulasan Pengguna Aplikasi Mandiri Online di Google Play Store dengan Menggunakan Metode Information Gain dan Naive Bayes ClassifierSari, A. E., Widowati, S., & Lhaksmana, K. M. (2019). Klasifikasi Ulasan Pengguna Aplikasi Mandiri Online di Goog,” e-Proceeding Eng., vol. 6, no. 2, pp. 9143–9157, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/viewFile/9933/9790

M. H. Tinambunan, A. Hasibuan, S. Wahyuni, and A. S. Wibowo, “Jurnal Bisnis Net Volume : 6 No . 1 Juni 2023 | ISSN : 2621 -3982 KLASIFIKASI TINGKAT KEPUASAN MAHASISWA TERHADAP FASILITAS PADA FTIK UNIVERSITAS DHARMAWANGSA Jurnal Bisnis Net Volume : 6 No . 1 Juni 2023 | ISSN : 2621 -3982 EISSN : 2722- 3574,” no. 1, pp. 208–215, 2023.

S. A. R. Rizaldi, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi JMO (Jamsostek Mobile) Pada Google Play Store Menggunakan Metode Naive Bayes,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 109–117, 2023, doi: 10.55123/storage.v2i3.2334.

D. Iskandar Mulyana and N. Lutfianti, “Penerapan Sentimen Analisis Dengan Algoritma SVM Dalam Tanggapan Netizen Terhadap Berita Resesi 2023,” Sisfotenika, vol. 13, no. 1, pp. 53–64, 2023.

D. T. Wisudawati, “Analisis Sentimen Terhadap Dampak COvid-19 Pada Perfoma E-Commerce di Indonesia Menggunakan SVM,” Univ. Muhammadiyah Semarang, pp. 1–146, 2020.

I. Kurniawan, A. Lia Hananto, S. Shofia Hilabi, A. Hananto, B. Priyatna, and A. Yuniar Rahman, “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: http://jurnal.mdp.ac.id

M. Parmitha, “ANALISIS SENTIMEN OPINI PUBLIK MENGENAI CALON PRESIDEN 2024 PADA SOSIAL MEDIA TWITTER MENGGUNAKAN MACHINE LEARNING ANALISIS SENTIMEN OPINI PUBLIK MENGENAI CALON PRESIDEN 2024 PADA SOSIAL MEDIA TWITTER MENGGUNAKAN,” 2024.

E. P. A. Akhmad, “Analisis Sentimen Ulasan Aplikasi DLU Ferry Pada Google Play Store Menggunakan Bidirectional Encoder Representations from Transformers,” J. Apl. Pelayaran Dan Kepelabuhanan, vol. 13, no. 2, pp. 104–112, 2023, doi: 10.30649/japk.v13i2.94.

A. Muhammadin and I. A. Sobari, “Analisis Sentimen Pada Ulasan Aplikasi Kredivo Dengan Algoritma Svm Dan Nbc,” Reputasi J. Rekayasa Perangkat Lunak, vol. 2, no. 2, pp. 85–91, 2021, doi: 10.31294/reputasi.v2i2.785.

A. Baita, Y. Pristyanto, N. Cahyono, P. Covid-, K. N. N. Akurasi, and K. Kunci, “ANALISIS SENTIMEN MENGENAI VAKSIN SINOVAC MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE ( SVM ) DAN K-NEAREST NEIGHBOR ( KNN ) Abstraksi Keywords :,” vol. 4, no. 2, pp. 42–46, 2021.

A. Wibowo, “Analisa Dan Visualisasi Data Penjualan Menggunakan Exploratory Data Analysis Pada PT. Telkominfra,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2292–2304, 2022, doi: 10.35957/jatisi.v9i3.2737.

M. Kholilullah, M. Martanto, and U. Hayati, “Analisis Sentimen Pengguna Twitter(X) Tentang Piala Dunia Usia 17 Menggunakan Metode Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 392–398, 2024, doi: 10.36040/jati.v8i1.8378.

S. Khomsah and A. S. Aribowo, “Model Text-Preprocessing Komentar Youtube Dalam Bahasa IndonesiaText-Preprocessing Model Youtube Comments in Indonesian,” vol. 4, no. 4, pp. 650–650, 2020.

M. R. Fauzan, H. Oktafia, L. Wijaya, and J. Karman, “KENAIKAN HARGA BBM DI MEDIA SOSIAL TWITTER,” vol. 1, no. 1, pp. 82–89, 2023.

D. Pradana, M. Luthfi Alghifari, M. Farhan Juna, and D. Palaguna, “Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network,” Indones. J. Data Sci., vol. 3, no. 2, pp. 55–60, 2022, doi: 10.56705/ijodas.v3i2.35.

Mesran, M., Syahrizal, M., Sarwandi, S., Aripin, S., Utomo, D. P., & Karim, A. (2024, April). A comparison of the performance of data mining classification algorithms on medical datasets with the application of data normalization. In AIP Conference Proceedings (Vol. 3048, No. 1, p. 020047). AIP Publishing LLC.

Dimensions Badge
Published
2025-09-27
How to Cite
Hendri Hariadi, A. A. P., Intan, B., & Armanto. (2025). Sentiment Analysis of User Reviews of Kitalulus Job Search App on Google Play Store Using Machine Learning. Bulletin of Information Technology (BIT), 6(3), 284 - 293. https://doi.org/10.47065/bit.v6i3.2220
Section
Articles