Sistem Pakar Berbasis AI dengan Artificial Neural Networks untuk Identifikasi Hama & Penyakit Jamur Tiram
Abstract
Oyster mushroom cultivation is an agricultural sector with high economic potential, but its productivity is often disrupted by pests and diseases. Inappropriate management due to farmers' limited knowledge can cause significant losses. This study aims to develop an expert system for oyster mushroom pest and disease diagnosis based on Artificial Neural Networks (ANN), to assist in early identification of emerging disorders. The dataset consists of 150 samples covering a combination of symptoms and disease labels, collected from two different cultivation locations. There are several stages in this study, namely the preprocessing process that includes label encoding, feature normalization using Z-score, and data division in a ratio of 80% for training and 20% for testing. The ANN model was designed using a Multi-Layer Perceptron (MLP) with two hidden layers containing 10 neurons each, a ReLU activation function, an Adam solver, and a maximum iteration of 1000. The test results showed the model has an accuracy rate of 97%, with perfect precision and recall values for most disease classes. This study shows that the ANN approach is able to effectively recognize oyster mushroom disease symptom patterns. This system can be an efficient and adaptive diagnostic tool, and has the potential to be further developed as a smart agricultural technology solution
References
Muh. I. Kadir, N. P. Husain, and R. A. Nur, “Peningkatan Kapasitas Budidaya Jamur Menggunakan Limbah Sagu Pada Masyarakat Kampung Sabron – Kabupaten Jayapura,” Jurnal Pengabdian Sosial, vol. 1, no. 3, pp. 93–101, Jan. 2024, doi: 10.59837/fnycvp29.
N. P. Husain, Muh. I. Kadir, and Muh. D. P, “The Oyster Mushroom Harvesting Determination System Based On Image Processing and Multi Layer Perceptron,” SinkrOn, vol. 8, no. 4, pp. 2212–2221, Oct. 2024, doi: 10.33395/sinkron.v8i4.14126.
M. I. Kadir and N. P. Husain, “Pelatihan Budidaya Jamur Dan Pembuatan Media Tanam Jamur Tiram Di Sulawesi Selatan,” pajoco, vol. 1, no. 2, Oct. 2021, doi: 10.33857/pajoco.v1i2.484.
Rhido Rezwana, Dwinita Arwidiyarti, and Hendri Ramdan, “Sistem Pakar Pendeteksi Penyakit Tanaman Jamur Tiram Menggunakan Metode Certainty Factor Berbasis Web,” processor, vol. 19, no. 1, May 2024, doi: 10.33998/processor.2024.19.1.1507.
C. Pamungkas and D. A. Nugraha, “SISTEM PAKAR DIAGNOSA PENYAKIT DAN HAMA JAMUR TIRAM DI PERKUMPULAN TANI JAMUR DI KECAMATAN TUREN,” 2024.
S. Hidayatullah, A. B. Setiawan, and R. K. Niswatin, “Sistem Pakar Diagnosa Hama dan Penyakit Tanaman Jamur Tiram Menggunakan Metode,” vol. 9, 2025.
V. F. Wulandari, A. Riyadi, and T. Hastono, “SISTEM PAKAR DIAGNOSA HAMA DAN PENYAKIT TANAMAN JAMUR TIRAM PUTIH MENGGUNAKAN METODE CERTAINTY FACTOR DENGAN PENELUSURAN FORWARD CHAINING,” Vortex, vol. 4, no. 1, p. 41, Jan. 2023, doi: 10.28989/vortex.v4i1.1467.
S. Matondang and P. U. Lp, “Sistem Pakar Diagnosis Penyakit Umum Menggunakan Metode Forward Chaining,” vol. 7, 2023.
A. Rafi Raihan, A. Wahyu Wardana, E. Pillardien A.R, S. Fadilah R, and A. Mustika Rizki, “PERBANDINGAN ALGORITMA LIGHTGBM DAN ANN UNTUK MENENTUKAN KUALITAS ANGGUR MERAH,” jati, vol. 9, no. 1, pp. 1572–1579, Jan. 2025, doi: 10.36040/jati.v9i1.12716.
B. Hendrik, “TINJAUAN SISTEMATIS PERAN JARINGAN SYARAF TIRUAN DAN DEEP LEARNING DALAM DIAGNOSA DEMAM BERDARAH DAN TIFUS,” Jurnal Informatika, vol. 16, no. 2, 2024.
F. Alfarisi, “DIAGNOSA HAMA PADA TANAMAN PADI MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORKS (ANN),” UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM, MALANG, 2023.
A. Hanafie, N. P. Husain, H. Kumkelo, and R. R. Putri, “APLIKASI EKSTRAKSI WAJAH MENGGUNAKAN ALGORITMA VIOLA JONES,” ILTEK, vol. 18, no. 02, pp. 87–91, Nov. 2023, doi: 10.47398/iltek.v18i02.130.
F. Fadilah and A. Komarudin, “PREDIKSI PENJUALAN OBAT BERBASIS ARTIFICIAL NEURAL NETWORK (ANN),” vol. 6, no. 3, 2024.
N. P. Husain, “BEST FIRST FEATURE SELECTION DAN RADIAL BASIS FUNCTION UNTUK KLASIFIKASI PENYAKIT DIABETES,” ILTEK, vol. 16, no. 01, pp. 29–33, Apr. 2021, doi: 10.47398/iltek.v16i01.41.
H. Okprana and R. Winanjaya, “Analisis Pengaruh Komposisi Data Training dan Testing Terhadap Akurasi Algoritma Resilient Backpropagation (RProp),” vol. 4, no. 1, 2022.
N. Putri Husain, H. B, M. Khairah, and M. Akbar, “Rancang Bangun Pendeteksi Jarak Aman Mata Dengan Layar Monitor Televisi Berbasis Arduino Uno,” jtek, vol. 2, no. 02, pp. 184–189, Dec. 2022, doi: 10.56923/jtek.v2i02.96.
N. P. Husain, “PERANCANGAN SISTEM MANAJEMEN PENJUALAN MOTOR CASH DAN CREDIT BERBASIS WEB (STUDI KASUS PADA TOKO RAYA MOTOR KOTA PAREPARE),” ILTEK, vol. 16, no. 2, pp. 95–102, Oct. 2021, doi: 10.47398/iltek.v16i2.644.
N. P. Husain, J. Junaedy, A. Arwinsa, and M. Soasiu, “Rancang Bangun Alat Pengering Dan Pengupas Kulit Kacang Hijau Menggunakan Arduino Uno Dan Sensor Termocouple,” JSCE, vol. 4, no. 2, pp. 154–163, Jul. 2023, doi: 10.61628/jsce.v4i2.836.
Copyright (c) 2025 Nursuci Putri Husain, Dian Mirnawaty Sultan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


