Penerapan Algoritma Naïve Bayes Dalam Analisis sentiment Masyarakat Terhadap STMIK Widya Cipta Dharma

  • Helmelya Putri Jelita * Mail STMIK Widya Cipta Dharma, Indonesia
  • Muhammad Ibnu Sa'ad STMIK Widya Cipta Dharma, Indonesia
  • Wahyuni STMIK Widya Cipta Dharma, Indonesia
Keywords: Analisis sentimen, Naïve Bayes, Google Maps, ulasan, Rating, SMOTE.

Abstract

This study applies the Naïve Bayes algorithm to analyze public sentiment toward STMIK Widya Cipta Dharma using Google Maps reviews as the primary data source. The research aims to classify community perceptions into three categories: positive, neutral, and negative. The methodology follows the CRISP-DM framework, incorporating stages such as data preprocessing (text cleaning, stopword removal, and stemming), TF-IDF for feature extraction, and SMOTE to address class imbalance. Sentiment labels were derived from a combination of review ratings (1–5 stars) and textual content. Results indicate that Naïve Bayes achieved 91% accuracy in classifying the majority (positive) class but struggled with minority classes (neutral and negative), yielding 0% precision and recall for these categories. After applying SMOTE, recall for the negative class improved to 100%, although overall accuracy dropped to 38%, reflecting a trade-off between balanced class recognition and model performance. The study highlights the algorithm's effectiveness in handling large-scale text data but underscores challenges in managing imbalanced datasets. These findings provide actionable insights for STMIK Widya Cipta Dharma to enhance service quality and institutional image by leveraging public feedback. Future research could explore hybrid algorithms or advanced preprocessing techniques to optimize sentiment analysis accuracy across all classes.

References

M. S. Assyifa, “ANALISIS SENTIMEN TERHADAP STMIK WIDYA CIPTA DHARMA MENGGUNAKAN PENDEKATAN LEXICON,” SKRIPSI, STMIK WIDYA CIPTA DHARMA, SAMARINDA , 2025.

E. Eunike, W. Wahyuni, and P. Adytia, “Analisis Sentimen Kepuasan Mahasiswa Terhadap Laboratorium Komputer STMIK Widya Cipta Dharma Menggunakan Algoritma Naïve Bayes,” Wicida Repository, pp. 1–7, 2024.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” Jurnal TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2018.

Affandy and O. Nandiyati, “Sentiment Analysis Berbasis Algoritma Naïve Bayes Classsifier untuk Identifikasi Persepsi Masyarakat Terhadap Produk / Layanan Perusahaan,” JOINS Journal of Information System , vol. 5, no. 1, pp. 126–135, May 2020, doi: 10.33633/joins.v5i1.3608.

H. P. A. Sormin, D. E. Ratnawat, and N. Y. Setiawan, “ANALISIS SENTIMEN MASYARAKAT TERHADAP LAYANAN UB PRESS DENGAN MENGGUNAKAN METODE NAÏVE BAYES DAN LEXICON-BASED FEATURES,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 1, pp. x–x, Jan. 2017, [Online]. Available: http://j-ptiik.ub.ac.id

E. Hokijuliandy, H. Napitupulu, and F. Firdaniza, “Analisis Sentimen Menggunakan Metode Klasifikasi Support Vector Machine (SVM) dan Seleksi Fitur Chi-Square,” SisInfo – Jurnal Sistem Informasi dan Informatika, vol. 5, no. 2, Aug. 2023.

S. Purnomo, H. Pratiwi, and M. I. Sa’ad, “Penerapan Data Mining Dalam Menganalisis Pola Belanja Konsumen Menggunakan Market Basket Analysis,” METIK JURNAL, vol. 7, no. 2, pp. 111–120, Dec. 2023, doi: 10.47002/metik.v7i2.678.

M. A. Brown, A. Gruen, G. Maldoff, S. Messing, Z. Sanderson, and M. Zimmer, “Web Scraping for Research: Legal, Ethical, Institutional, and Scientific Considerations,” Web Scraping for Research, Dec. 2024, [Online]. Available: http://arxiv.org/abs/2410.23432

D. Chrisinta and J. E. Simarmata, “Eksplorasi Teknik Web Scraping pada Data Mining: Pendekatan Pencarian Data Berbasis Python,” Faktor Exacta, vol. 17, no. 1, pp. 58–68, Mar. 2024, doi: 10.30998/faktorexacta.v17i1.22393.

M. K. Insan, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, Feb. 2023.

T. I. Rais, “ANALISIS SENTIMEN TERHADAP KOMENTAR VIDEO YOUTUBE RAIDEN SHOGUN - JUDGMENT OF EUTHYMIA MENGGUNAKAN METODE MAJORITY VOTING,” UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH, Jakarta, 2022.

G. Douzas and F. Bacao, “Geometric SMOTE: Effective oversampling for imbalanced learning through a geometric extension of SMOTE,” Geometric SMOTE, Sep. 2017, [Online]. Available: http://arxiv.org/abs/1709.07377

E. W. H. C. Candana, I. G. A. Gunaidi, and D. G. H. Divayana, “PERBANDINGAN FUZZY TSUKAMOTO, MAMDANI DAN SUGENO DALAM PENENTUAN HARI BAIK PERNIKAHAN BERDASARKAN WARIGA MENGGUNAKAN CONFUSION MATRIX,” Jurnal Ilmu Komputer Indonesia (JIK), vol. 6, no. 2, Nov. 2021.

F. Salsabila, I. Fitrianti, Y. Umaidah, and N. Heryana, “PENERAPAN METODE CRISP-DM UNTUK ANALISA PENDAPATAN BERSIH BULANAN PEKERJA INFORMAL DI PROVINSI JAWA BARAT DENGAN ALGORITMA K-MEANS,” DINAMIK, vol. 28, no. 2, 2023.

N. Sakti, F. Natsir, and S. Istianah, “Penentuan Penjualan Barang Berdasarkan Pengelompokan Produk dengan K-Means Clustering Metode CRISP-DM Pada CV.Sembako Dina,” Zetroem, vol. 5, no. 2, 2023.

Dimensions Badge
Published
2025-06-17
How to Cite
Putri Jelita, H., Ibnu Sa’ad, M., & Wahyuni. (2025). Penerapan Algoritma Naïve Bayes Dalam Analisis sentiment Masyarakat Terhadap STMIK Widya Cipta Dharma. Bulletin of Information Technology (BIT), 6(2), 148 -160. https://doi.org/10.47065/bit.v6i2.2029
Section
Articles