Penerapan Algoritma Naïve Bayes Dalam Analisis sentiment Masyarakat Terhadap STMIK Widya Cipta Dharma
Abstract
This study applies the Naïve Bayes algorithm to analyze public sentiment toward STMIK Widya Cipta Dharma using Google Maps reviews as the primary data source. The research aims to classify community perceptions into three categories: positive, neutral, and negative. The methodology follows the CRISP-DM framework, incorporating stages such as data preprocessing (text cleaning, stopword removal, and stemming), TF-IDF for feature extraction, and SMOTE to address class imbalance. Sentiment labels were derived from a combination of review ratings (1–5 stars) and textual content. Results indicate that Naïve Bayes achieved 91% accuracy in classifying the majority (positive) class but struggled with minority classes (neutral and negative), yielding 0% precision and recall for these categories. After applying SMOTE, recall for the negative class improved to 100%, although overall accuracy dropped to 38%, reflecting a trade-off between balanced class recognition and model performance. The study highlights the algorithm's effectiveness in handling large-scale text data but underscores challenges in managing imbalanced datasets. These findings provide actionable insights for STMIK Widya Cipta Dharma to enhance service quality and institutional image by leveraging public feedback. Future research could explore hybrid algorithms or advanced preprocessing techniques to optimize sentiment analysis accuracy across all classes.
References
M. S. Assyifa, “ANALISIS SENTIMEN TERHADAP STMIK WIDYA CIPTA DHARMA MENGGUNAKAN PENDEKATAN LEXICON,” SKRIPSI, STMIK WIDYA CIPTA DHARMA, SAMARINDA , 2025.
E. Eunike, W. Wahyuni, and P. Adytia, “Analisis Sentimen Kepuasan Mahasiswa Terhadap Laboratorium Komputer STMIK Widya Cipta Dharma Menggunakan Algoritma Naïve Bayes,” Wicida Repository, pp. 1–7, 2024.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” Jurnal TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2018.
Affandy and O. Nandiyati, “Sentiment Analysis Berbasis Algoritma Naïve Bayes Classsifier untuk Identifikasi Persepsi Masyarakat Terhadap Produk / Layanan Perusahaan,” JOINS Journal of Information System , vol. 5, no. 1, pp. 126–135, May 2020, doi: 10.33633/joins.v5i1.3608.
H. P. A. Sormin, D. E. Ratnawat, and N. Y. Setiawan, “ANALISIS SENTIMEN MASYARAKAT TERHADAP LAYANAN UB PRESS DENGAN MENGGUNAKAN METODE NAÏVE BAYES DAN LEXICON-BASED FEATURES,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 1, pp. x–x, Jan. 2017, [Online]. Available: http://j-ptiik.ub.ac.id
E. Hokijuliandy, H. Napitupulu, and F. Firdaniza, “Analisis Sentimen Menggunakan Metode Klasifikasi Support Vector Machine (SVM) dan Seleksi Fitur Chi-Square,” SisInfo – Jurnal Sistem Informasi dan Informatika, vol. 5, no. 2, Aug. 2023.
S. Purnomo, H. Pratiwi, and M. I. Sa’ad, “Penerapan Data Mining Dalam Menganalisis Pola Belanja Konsumen Menggunakan Market Basket Analysis,” METIK JURNAL, vol. 7, no. 2, pp. 111–120, Dec. 2023, doi: 10.47002/metik.v7i2.678.
M. A. Brown, A. Gruen, G. Maldoff, S. Messing, Z. Sanderson, and M. Zimmer, “Web Scraping for Research: Legal, Ethical, Institutional, and Scientific Considerations,” Web Scraping for Research, Dec. 2024, [Online]. Available: http://arxiv.org/abs/2410.23432
D. Chrisinta and J. E. Simarmata, “Eksplorasi Teknik Web Scraping pada Data Mining: Pendekatan Pencarian Data Berbasis Python,” Faktor Exacta, vol. 17, no. 1, pp. 58–68, Mar. 2024, doi: 10.30998/faktorexacta.v17i1.22393.
M. K. Insan, U. Hayati, and O. Nurdiawan, “ANALISIS SENTIMEN APLIKASI BRIMO PADA ULASAN PENGGUNA DI GOOGLE PLAY MENGGUNAKAN ALGORITMA NAIVE BAYES,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, Feb. 2023.
T. I. Rais, “ANALISIS SENTIMEN TERHADAP KOMENTAR VIDEO YOUTUBE RAIDEN SHOGUN - JUDGMENT OF EUTHYMIA MENGGUNAKAN METODE MAJORITY VOTING,” UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH, Jakarta, 2022.
G. Douzas and F. Bacao, “Geometric SMOTE: Effective oversampling for imbalanced learning through a geometric extension of SMOTE,” Geometric SMOTE, Sep. 2017, [Online]. Available: http://arxiv.org/abs/1709.07377
E. W. H. C. Candana, I. G. A. Gunaidi, and D. G. H. Divayana, “PERBANDINGAN FUZZY TSUKAMOTO, MAMDANI DAN SUGENO DALAM PENENTUAN HARI BAIK PERNIKAHAN BERDASARKAN WARIGA MENGGUNAKAN CONFUSION MATRIX,” Jurnal Ilmu Komputer Indonesia (JIK), vol. 6, no. 2, Nov. 2021.
F. Salsabila, I. Fitrianti, Y. Umaidah, and N. Heryana, “PENERAPAN METODE CRISP-DM UNTUK ANALISA PENDAPATAN BERSIH BULANAN PEKERJA INFORMAL DI PROVINSI JAWA BARAT DENGAN ALGORITMA K-MEANS,” DINAMIK, vol. 28, no. 2, 2023.
N. Sakti, F. Natsir, and S. Istianah, “Penentuan Penjualan Barang Berdasarkan Pengelompokan Produk dengan K-Means Clustering Metode CRISP-DM Pada CV.Sembako Dina,” Zetroem, vol. 5, no. 2, 2023.
Copyright (c) 2025 Helmelya Helmelya Putri Jelita, Muhammad Ibnu Sa'ad Muhammad Ibnu Sa'ad, Wahyuni wahyuni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


