Rekomendasi Sparepart Pada Bengkel Robbi Motor Berbasis Algoritma Apriori
Abstract
The development of transportation, especially two-wheeled motorized vehicles, drives the increasing demand for maintenance services and the availability of spare parts. However, many workshops still face challenges in managing spare parts stock, which is handled manually. This study aims to design and develop a spare parts recommendation system at Robbi Motor Workshop using the Apriori Algorithm, as well as to test the performance of the developed system. The method used is data mining with association techniques, where the Apriori Algorithm is applied to discover spare parts purchasing patterns from transaction data. The system enables users to analyze transactions based on a selected time range without the need to manually input minimum support and confidence values. The results show that the system is capable of generating relevant association rules, such as: “If consumers buy Engine Oil, then consumers will also buy Axle Oil”, with a support value of 67% and a confidence value of 86%. In addition, the system’s accuracy was tested using the lift value against two recommendation rules: (1) Engine Oil → Axle Oil with a lift value of 0.9949, and (2) Inner Tire → Axle Oil with a lift value of 1.0714. A lift value > 1 indicates that the combination of items has a stronger association than random occurrence. The system is implemented as a web-based application using the Laravel framework, equipped with features for transaction data management, Apriori analysis, analysis history, and exporting analysis results to PDF format. Testing using the blackbox method shows that the system operates according to specifications and produces accurate outputs. With this recommendation system, it is expected that the workshop can improve the efficiency of spare parts stock management.
References
M. I. R. Ihsan and D. M. D. Kanita Salsabila Dwi Irmanti, “Implementasi Algoritma Apriori Dalam Analisa Penjualan Sparepart Motor,” J. Pariwisata Bisnis Digit. dan Manaj., vol. 1, no. 1, pp. 43–48, 2022.
L. Febriyanti, M. R. Pahlevi. B, and E. Rohaini, “Perancangan Sistem Informasi Penjualan Sparepart Dan Jasa Service Pada Bengkel Elsya Midya Motor,” J. Manaj. Teknol. Dan Sist. Inf., vol. 2, no. 1, pp. 110–119, 2022, doi: 10.33998/jms.2022.2.1.52.
E. Saputra and R. Fauzi, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Sparepart Motor,” Comput. Sci. Ind. Eng., vol. 9, no. 6, 2023, doi: 10.33884/comasiejournal.v9i6.7865.
S. Salmon, S. Lailiyah, N. Nursobah, and R. Andrea, “Penerapan Algoritma Hash Based Terhadap Penentuan Rule Asosiasi Transaksi Penjualan Sparepart Sepeda Motor,” J. Media Inform. Budidarma, vol. 8, no. 2, p. 866, 2024, doi: 10.30865/mib.v8i2.7410.
A. I. Zalukhu, D. Sartika, and S. Wahyuni, “Penerapan Algoritma Apriori untuk Optimasi Strategi Penjualan Berdasarkan Analisis Pola Pembelian di Torsa Cafe,” Bull. Inf. Technol., vol. 5, no. 4, pp. 295–304, 2024, doi: 10.47065/bit.v5i2.1715.
M. Arhami and M. Nasir, Data Mining Algoritma dan Implementasi. Yogyakarta: ANDI, 2020.
Z. Abidin, A. K. Amartya, and A. Nurdin, “PENERAPAN ALGORITMA APRIORI PADA PENJUALAN SUKU CADANG KENDARAAN RODA DUA (Studi Kasus: Toko Prima Motor Sidomulyo),” J. Teknoinfo, vol. 16, no. 2, p. 225, 2022, doi: 10.33365/jti.v16i2.1459.
A. J. P. Sibarani, “Implementasi Data Mining Menggunakan Algoritma Apriori Untuk Meningkatkan Pola Penjualan Obat,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 262–276, 2020, doi: 10.35957/jatisi.v7i2.195.
A. O. Br Ginting, “Penerapan Data Mining Korelasi Penjualan Spare Part Mobil Menggunakan Metode Algoritma Apriori (Studi Kasus: CV. Citra Kencana Mobil),” J. Inf. Technol., vol. 1, no. 2, pp. 70–77, 2021, doi: 10.32938/jitu.v1i2.1472.
Y. A. Alhillah, W. Priatna, and A. Fitriyani, “Implementation of Apriori Algorithm for Determining Spare Parts Product Recommendation Packages,” J. Appl. Informatics Comput., vol. 7, no. 2, pp. 212–217, 2023, doi: 10.30871/jaic.v7i2.5589.
F. Suroso, G. M. Rahmah, and M. P. Utami, “Implementasi Pemanfaatan Sistem Informasi Peramalan Kebutuhan Suku Cadang Kendaraan Berbasis Web,” J. Community Serv. Sustain., vol. 2, no. 1, pp. 11–20, 2024, doi: 10.52330/jocss.v2i1.205.
S. Usna, Sudjiran, and M. Hidayatullah, “Aplikasi Penjualan Pada Bengkel Bintoro Motor Service Dan Sparepart Berbasis Web,” J. Ilm. SIKOMTEK, vol. 13, no. 1, pp. 24–29, 2023, [Online]. Available: https://sikomtek.jakstik.ac.id/index.php/jurnalsikomtek/article/view/30
L. Rahmawati and Sumarsono, “Desain Pengembangan Website dengan Arsitektur Model View Controller pada Framework Laravel,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 4, pp. 785–790, 2024.
D. Aipina and H. Witriyono, “Pemanfaatan Framework Laravel Dan Framework Boostrap Pada Pembangunan Aplikasi Penjualan Hijab Berbasis Web,” J. Media Infotama, vol. 18, no. 1, p. 2022, 2022.
Y. Aziz, H. Hasdiana, and N. Nurjamiyah, “Analisis Asosiasi Rule Mining Dalam Rekomendasi Sparepart Pada Bengkel Service 227 Menggunakan Algortima Ct-Pro,” J. Media Inform., vol. 4, no. 1, pp. 31–39, 2022, doi: 10.55338/jumin.v4i1.403.
M. Fariz Dewananta and E. Ariyani, “Perancangan Sistem Informasi Pengendalian Persediaan Sparepart dengan Metode Economic Order Quantity di Bengkel Mobil Sumber Jaya Probolinggo,” J. Ilm. Dikdaya, vol. 13, no. 1, p. 287, 2023, doi: 10.33087/dikdaya.v13i1.428.
F. D. Ramadani, B. Irawan, A. Bahtiar, T. Informatika, A. Apriori, and P. Pembelian, “Analisis Keranjang Pasar Untuk Peningkatan Penjualan Menggunakan Algoritma Apriori,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 2942–2950, 2024.
M. Syarif and E. B. Pratama, “Analisis Metode Pengujian Perangkat Lunak Blackbox Testing Dan Pemodelan Diagram Uml Pada Aplikasi Veterinary Services Yang Dikembangkan Dengan Model Waterfall,” J. Tek. Inform. Kaputama, vol. 5, no. 2, pp. 253–258, 2021.
K. Erwansyah, B. Andika, and R. Gunawan, “Implementasi Data Mining Menggunakan Asosiasi Dengan Algoritma Apriori Untuk Mendapatkan Pola Rekomendasi Belanja Produk Pada Toko Avis Mobile,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 4, no. 1, p. 148, 2021, doi: 10.53513/jsk.v4i1.2628.
Copyright (c) 2025 Suharni, Nursuci Putri Husain, Ashriyanto Atsari Hardiman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


