Penerapan Algoritma K-Means Clustering pada Kinerja Mesin Screw press

  • Fikri Kurnia Rahman Universitas Islam Negeri Sultan Syarif Kasim, Indonesia
  • Jasril * Mail Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Suwanto Sanjaya Universitas Islam Negeri Sultan Syarif Kasim, Indonesia
  • Lestari Handayani Universitas Islam Negeri Sultan Syarif Kasim, Indonesia
  • Fitri Insani Universitas Islam Negeri Sultan Syarif Kasim, Indonesia

Abstract

The screw press is one of the machines used in the process of separating oil from tanks containing Fresh Fruit Bunches (FFB). The machine consists of a twin-screw system that functions to extract oil from the pressing unit, with back pressure applied by a hydraulic double cone. The mixed fruit residue is compreWCSSd, causing the oil contained within the residue to be released due to the pressure exerted by the press machine. Maintenance and repair of machinery are eWCSSntial activities to support productive operations in any sector. Therefore, it is necessary to conduct analysis to identify patterns in machine conditions within the factory. One effective approach to discovering machine condition patterns is through clustering techniques. Clustering is a method of grouping data based on certain parameters to form clusters of objects that share similar characteristics. In this study, data were collected from PT. XYZ for the period of April 2024 to May 2024, with a total of 23,002 records. The analysis was conducted using the K-Means Clustering algorithm, with testing carried out on 3 to 15 clusters. Based on the evaluation using the Davies-Bouldin Index (DBI), the most optimal clustering result was obtained with 3 clusters, achieving the lowest DBI value of 0.386. Meanwhile, using the Elbow Method, the optimal number of clusters was determined to be 4, as indicated by the Elbow point on the WCSS graph, with a Sum of Square Error (WCSS) value of 270. Therefore, it can be concluded that the clustering results using the K-Means Clustering algorithm are relevant for identifying machine condition patterns and are expected to assist in monitoring and managing the condition of the screw press machine.

References

I. Anwar, A. Afdal, D. Denur, and D. Dermawan, “Analisis Penyebab Kerusakan Hub Screw Press dan Optimasi Teknik Pemeliharaan Terhadap Mesin Pabrik Pengolahan Kelapa Sawit,” Jurnal Surya Teknika, vol. 10, no. 1, pp. 733–737, 2023, doi: 10.37859/jst.v10i1.5003.

M. I. Pasaribu, D. A. A. Ritonga, and A. Irwan, “Analisis Perawatan (Maintenance) Mesin Screw Press Di Pabrik Kelapa Sawit Dengan Metode Failure Mode and Effect Analysis (Fmea) Di Pt. Xyz,” Jitekh, vol. 9, no. 2, pp. 104–110, 2021, doi: 10.35447/jitekh.v9i2.432.

N. Hairiyah, I. Musthofa, and A. Aminah, “Analisis Kerusakan Bearing Main Shaft Pada Mesin Screw Press Msb 15 Dengan Metode Total Productive Maintenance (Tpm) Di Pabrik Kelapa Sawit Pt. Xyz,” Jurnal Teknologi Pertanian Andalas, vol. 28, no. 1, p. 1, 2024, doi: 10.25077/jtpa.28.1.1-7.2024.

A. Ishak, R. M. Sari, and G. H. Sabri, “Perencanaan Sistem Pemeliharaan Mesin Screw Press Menggunakan Metode Reliability Centered Maintenance ( Studi Kasus pada PMKS ),” pp. 324–334, 2023.

A. Fabrica, “4 1,2,3,” vol. 5, no. 2, 2023.

M. Wisnu, G. Supriyanto, and Hermantoro, “Analisis Kebutuhan Uap pada Perebusan Tiga Puncak,” Agroforetech, vol. 1, pp. 685–692, 2023.

P. Rahayu et al., Buku Ajar Data Mining, vol. 1, no. January 2024. 2018.

N. D. Rahayu, A. H. Anshor, and I. Afriantoro, “Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means,” JUKI : Jurnal Komputer dan Informatika, vol. 6, no. 1, pp. 71–83, 2024, doi: 10.53842/juki.v6i1.474.

D. Suryanto and I. R. Adevi, “Analisa Penjualan Toko Hijab Kiki Hn Dengan Penerapan Data Mining Metode K-Means Clustering Dan Market Basket Analysis,” Jurnal Mirai Management, vol. 8, no. 3, pp. 167–176, 2023.

Novia Wulandari, Nisa Dienwati Nuris, and Saeful Anwar, “Penerapan Algoritma K-Means Clustering Pada Tingkat Inflasi Kota Di Indonesia,” Akuntansi, vol. 2, no. 2, pp. 15–34, 2023, doi: 10.55606/akuntansi.v2i2.235.

A. Al Masykur, S. K. Gusti, S. Sanjaya, F. Yanto, and F. Syafria, “Penerapan Metode K-Means Clustering untuk Pemetaan Pengelompokan Lahan Produksi Tandan Buah Segar,” Jurnal Informatika, vol. 10, no. 1, 2023, doi: 10.31294/inf.v10i1.15621.

Z. Sitorus, “Penerapan Data Mining Untuk Clustering Penduduk Miskin Di Kota Tanjungbalai Menggunakan Metode Algoritma K-Means,” Journal of Science and Social Research, vol. 4307, no. 1, pp. 212–218, 2024, [Online]. Available: http://jurnal.goretanpena.com/index.php/JSSR

A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 849–855, 2022, doi: 10.36040/jati.v6i2.5755.

E. Nurliana, B. Irawan, and A. Bahtiar, “Implementasi Data Mining Algoritma K-Means Untuk Klasifikasi Penduduk Miskin Berdasarkan Tingkat Kemiskinan Di Jawa Barat,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 1116–1122, 2024, doi: 10.36040/jati.v8i1.8883.

E. Muningsih, I. Maryani, and V. R. Handayani, “Penerapan Metode K-Means dan Optimasi Jumlah Cluster dengan Index Davies Bouldin untuk Clustering Propinsi Berdasarkan Potensi Desa,” Jurnal Sains dan Manajemen, vol. 9, no. 1, p. 96, 2021, [Online]. Available: www.bps.go.id

A. Winarta and W. J. Kurniawan, “Optimasi Cluster K-Means Menggunakan Metode Elbow Pada Data Pengguna Narkoba Dengan Pemrograman Python,” JTIK (Jurnal Teknik Informatika Kaputama), vol. 5, no. 1, pp. 113–119, 2021, doi: 10.59697/jtik.v5i1.593.

A. Supriyadi, A. Triayudi, and I. D. Sholihati, “Perbandingan Algoritma K-Means Dengan K-Medoids Pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 6, no. 2, pp. 229–240, 2021, doi: 10.29100/jipi.v6i2.2008.

F. M. Almufqi and A. Voutama, “Perbandingan Metode Data Mining Untuk Memprediksi Prestasi Akademik Siswa,” Jurnal Teknika, vol. 15, no. 1, pp. 61–66, 2023, doi: 10.30736/jt.v15i1.929.

R. Rahmi, D. Antoni, H. Syaputra, F. Fatoni, and T. B. Kurniawan, “Metode Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Algoritma Neural Network,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 1, pp. 16–23, 2023, doi: 10.32736/sisfokom.v12i1.1406.

I. Pii, N. Suarna, and N. Rahaningsih, “Penerapan Data Mining Pada Penjualan Produk Pakaian Dameyra Fashion Menggunakan Metode K-Means Clustering,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 423–430, 2023, doi: 10.36040/jati.v7i1.6336.

R. A. Nawasta, N. H. Cahyana, and H. Heriyanto, “Implementation of Mel-Frequency Cepstral Coefficient as Feature Extraction using K-Nearest Neighbor for Emotion Detection Based on Voice Intonation,” Telematika, vol. 20, no. 1, p. 51, 2023, doi: 10.31315/telematika.v20i1.9518.

Ary Prandika Siregar, Dwi Priyadi Purba, Jojor Putri Pasaribu, and Khairul Reza Bakara, “Implementasi Algoritma Random Forest Dalam Klasifikasi Diagnosis Penyakit Stroke,” Jurnal Penelitian Rumpun Ilmu Teknik, vol. 2, no. 4, pp. 155–164, 2023, doi: 10.55606/juprit.v2i4.3039.

C. Nas, “Data Mining Pengelompokan Bidang Keahlian Mahasiswa Menggunakan Algoritma K-Means (Studi Kasus : Universitas Cic Cirebon),” Syntax : Jurnal Informatika, vol. 9, no. 1, pp. 1–14, 2020, doi: 10.35706/syji.v9i1.3472.

C. S. D. B. Sembiring, L. Hanum, and S. P. Tamba, “Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Menentukan Judul Skripsi Dan Jurnal Penelitian (Studi Kasus Ftik Unpri),” Jurnal Sistem Informasi dan Ilmu Komputer Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 80–85, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2393.

A. Bahauddin, A. Fatmawati, and F. Permata Sari, “Analisis Clustering Provinsi Di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means,” Jurnal Manajemen Informatika dan Sistem Informasi, vol. 4, no. 1, pp. 1–8, 2021, doi: 10.36595/misi.v4i1.216.

M. Sholeh and K. Aeni, “Perbandingan Evaluasi Metode Davies Bouldin, Elbow dan Silhouette pada Model Clustering dengan Menggunakan Algoritma K-Means,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 8, no. 1, p. 56, 2023, doi: 10.30998/string.v8i1.16388.

N. A. Maori and E. Evanita, “Metode Elbow dalam Optimasi Jumlah Cluster pada K-Means Clustering,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 14, no. 2, pp. 277–288, 2023, doi: 10.24176/simet.v14i2.9630.

Z. Budiarso, H. Listiyono, and A. Karim, “Optimizing LSTM with Grid Search and Regularization Techniques to Enhance Accuracy in Human Activity Recognition,” Journal of Applied Data Sciences, vol. 5, no. 4, pp. 2002–2014, Nov. 2024, doi: 10.47738/jads.v5i4.433.

B. Bangun and A. K. Karim, “Pengembalian Data Yang Hilang Pada Dataset Dengan Menggunakan Algoritma K-Nearest Neighbor Imputation Data Mining,” Jurnal Media Informatika Budidarma, vol. 8, no. 3, p. 1706, 2024, doi: 10.30865/mib.v8i3.8014.

A. Karim, “Penerapan Algoritma Entropy dan Aras Menentukan Desa Terbaik Di Pemerintah Kabupaten Labuhanbatu,” vol. 3, no. 1, pp. 33–43, 2022.

A. Karim, “Implementation of the Multi-Objective Optimization Method on the Basic of Ratio Analysis ( MOORA ) and Entropy Weighting in New Employee Recruitment,” vol. 5, no. 2, pp. 704–712, 2024, doi: 10.47065/josh.v5i2.4859.

A. Karim, “Sistem Pendukung Keputusan Penerimaan Analis Di Pusat Penelitian Kelapa Sawit Menggunakan Metode Complex Proportional Assessment (Copras),” Buletin Ilmiah Informatika Teknologi, vol. 2, no. 1, pp. 32–42, [Online]. Available: https://ejurnal.amikstiekomsu.ac.id/index.php/BIIT

A. Karim, “Clusterisasi Tingkat Pengangguran Terbuka Menurut Provinsi di Indonesia Menggunakan Algoritma K-Medoids,” 2024, doi: 10.47065/bits.v6i3.6198.

Abdul Karim, “Implementasi Metode Multi-Objective Optimization On The Basis Of Ratio Analysis dalam Seleksi Mahasiswa Program Indonesia Pintar,” Bulletin of Computer Science Research, vol. 3, no. 5, pp. 351–356, 2023, doi: 10.47065/bulletincsr.v3i5.283.

Dimensions Badge
Published
2025-06-04
How to Cite
Kurnia Rahman, F., Jasril, Sanjaya, S., Handayani, L., & Insani, F. (2025). Penerapan Algoritma K-Means Clustering pada Kinerja Mesin Screw press . Bulletin of Information Technology (BIT), 6(2), 59 - 70. https://doi.org/10.47065/bit.v6i2.2002
Section
Articles