Analisis Sentimen Terhadap Kontroversi Pembangunan IKN Di Media Sosial Twitter Menggunakan Metode Naive Bayes
Abstract
The relocation of Indonesia's capital city (IKN) from Jakarta to East Kalimantan is a national strategic policy that has generated diverse public responses. On one hand, it is seen as an effort to promote equitable development, but on the other hand, it has drawn criticism related to its environmental, social, and financial impacts. Social media, particularly Twitter, has become a popular platform for expressing public opinion on this issue. This study aims to analyze public sentiment toward the IKN development as expressed through Twitter posts. By understanding public sentiment trends, this research seeks to provide insights into public perception that may serve as valuable input for government evaluation and policymaking. The research employed a quantitative approach using data mining techniques. Data were collected through web crawling using the snscrape library and underwent several pre-processing stages, including cleansing, case folding, tokenization, stopword removal, and stemming. Sentiment analysis was conducted using a lexicon-based approach, combined with a Naïve Bayes classification algorithm supported by TF-IDF weighting. Based on 2,178 analyzed tweets, the results showed that positive sentiment dominated at 52.4%, followed by negative sentiment at 28.4%, and neutral sentiment at 19.3%. The classification model achieved an accuracy rate of 75.69%. These findings indicate a general tendency of public support for the IKN development and highlight the importance of sentiment analysis as a strategic tool for interpreting public opinion in the digital era
References
H. Dhery, A. Assyam, and F. N. Hasan, “Analisis Sentimen Twitter Terhadap Perpindahan Ibu Kota Negara Ke IKN Nusantara Menggunakan Orange Data Mining,” Media Online), vol. 4, no. 1, pp. 341–349, 2023, doi: 10.30865/klik.v4i1.957.
S. Lestari and M. Mupaat, “Analisis Sentimen Masyarakat Indonesia terhadap Pemindahan Ibu Kota Negara Indonesia pada Twitter,” Sistem Informasi, vol. 8, no. 1, pp. 13–22, Jun. 2022.
N. Hadi and D. Sugiarto, “Analisis Sentimen Pembangunan IKN pada Media Sosial X Menggunakan Algoritma SVM, Logistic Regression dan Naïve Bayes,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 10, no. 1, pp. 37–49, Jan. 2025, doi: 10.30591/jpit.v10i1.7106.
M. Reinaldy Destra Fachreza and M. Ainul Yaqin, “Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” 2023.
I. Dwi, N. #1, M. Hafid, and D. Irmayanti, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara (IKN) Pada Platform Twitter Menggunakan Metode Naïve Bayes,” 2023. [Online]. Available: https://katadata.co.id
M. Reinaldy Destra Fachreza and M. Ainul Yaqin, “Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” 2023.
A. Munawaroh and R. Ridhoi, “SENTIMENT ANALYSIS DENGAN NAÏVE BAYES BERBASIS ORANGE TERHADAP RESIKO PEMBANGUNAN IKN,” 2024.
F. Zamzami, R. Hidayat, and R. Fathonah, “PENERAPAN ALGORITMA NAIVE BAYES CLASSIFIER UNTUK ANALISIS SENTIMEN KOMENTAR TWITTER PROYEK PEMBAGUNAN IKN,” Faktor Exacta, vol. 17, no. 1, pp. 47–56, Mar. 2024, doi: 10.30998/faktorexacta.v17i1.22265.
M. Reinaldy Destra Fachreza and M. Ainul Yaqin, “Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” 2023.
F. Zamzami, R. Hidayat, and R. Fathonah, “PENERAPAN ALGORITMA NAIVE BAYES CLASSIFIER UNTUK ANALISIS SENTIMEN KOMENTAR TWITTER PROYEK PEMBAGUNAN IKN,” Faktor Exacta, vol. 17, no. 1, May 2024, doi: 10.30998/faktorexacta.v17i1.22265.
I. Dwi, N. #1, M. Hafid, and D. Irmayanti, “Analisis Sentimen Terhadap Pemindahan Ibu Kota Negara (IKN) Pada Platform Twitter Menggunakan Metode Naïve Bayes,” 2023. [Online]. Available: https://katadata.co.id
A. Kurniawan and S. Waluyo, “Penerapan Algoritma Naive Bayes Dalam Analisis Sentimen Pemindahan Ibukota Pada Twitter Application Of Naive Bayes Algorithm In Capital Movement Sentiment Analysis On Twitter,” 2022. [Online]. Available: https://senafti.budiluhur.ac.id/index.php
N. S. Wardani, A. Prahutama, and P. Kartikasari, “ANALISIS SENTIMEN PEMINDAHAN IBU KOTA NEGARA DENGAN KLASIFIKASI NAÏVE BAYES UNTUK MODEL BERNOULLI DAN MULTINOMIAL”, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/
C. Huda and M. Betty Yel, “Analisa Sentimen Tentang Ibu Kota Nusantara (IKN) Dengan Menggunakan Algoritma K-Nearest Neighbors (KNN) dan Naïve Bayes,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI V, vol. 7, no. 1, pp. 126–130, 2024.
Copyright (c) 2025 Muhammad Dimas, Drs. Azahari, M.Kom, Muhammad Ibnu Sa’ad, S.Kom.,M.Kom

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


