Optimizing CCTV Damage Diagnosis with Backward Chaining Based Expert System
Abstract
The use of CCTV systems in daily life is increasingly widespread, along with the growing need for security and surveillance. However, malfunctions in both hardware and software components of CCTV devices remain a challenge, especially for technicians and non-technical users who lack sufficient expertise. This study aims to develop an expert system using the Backward Chaining method to assist technicians and users in accurately and efficiently diagnosing various types of CCTV malfunctions. The Backward Chaining method is employed due to its ability to trace symptoms back to the root cause using a rule-based logical inference approach. The system is implemented as a mobile application for Android platforms, with a knowledge base constructed from the expertise of CCTV technicians at PT. Smart CCTV Indonesia. The results of the study indicate that the expert system provides significant ease in diagnosing CCTV issues and offers relevant recommendations to both technicians and users. Thus, this system is expected to enhance efficiency in troubleshooting processes and support better decision-making in the management of digital security systems
References
B. Sawyer, CCTV DVR & Wireless Home Camera Installation. Inggris: Amazon Digital Services LLC - Kdp, 2024. [Online]. Available: https://www.google.co.id/books/edition/CCTV_DVR_Wireless_Home_Camera_Installati/DPCW0AEACAAJ?hl=id
E. M. N. C, CCTV Surveillance Systems Faults, and Solution Measures. Inggris: Amazon Digital Services LLC - Kdp, 2024. [Online]. Available: https://www.google.co.id/books/edition/CCTV_Surveillance_Systems/2flo0AEACAAJ?hl=id
M. Aswiputri, “Literature Review Determinasi Sistem Informasi Manajemen: Database, Cctv Dan Brainware,” J. Ekon. Manaj. Sist. Inf., vol. 3, no. 3, pp. 312–322, 2022, doi: 10.31933/jemsi.v3i3.821.
H. Jeon, H. Kim, D. Kim, and J. Kim, “PASS-CCTV: Proactive Anomaly surveillance system for CCTV footage analysis in adverse environmental conditions,” Expert Syst. Appl., vol. 254, no. May, p. 124391, 2024, doi: 10.1016/j.eswa.2024.124391.
A. Airlangga, A. Z. Falani, T. Informatika, U. Narotama, T. Informatika, and U. Narotama, “SISTEM PAKAR UNTUK DIAGNOSA KERUSAKAN PADA Smartphone Android Menggunakan METODE FORWARD CHAINING,” SPIRIT, vol. 14, no. 2, pp. 30–35, 2022.
J. Wuri, T. Widodo, and A. S. Hardi, “Speed of convergence in global value chains: Forward or backward linkage,” Heliyon, vol. 9, no. 7, p. e18070, 2023, doi: 10.1016/j.heliyon.2023.e18070.
A. Dinata and A. Sani, “Perancangan Sistem Pakar Dalam Mendiagnosa Kerusakan Cctv Berbasis Web Menggunakan Metode Forward Chaining (Studi Kasus: Pt.Mnc Pictures),” EBIDEkonomi Bisnis Digit., vol. 1, no. 2, pp. 209–218, 2023, doi: 10.37365/ebid.v1i2.226.
R. W. Dari and S. Sapriadi, “Sistem Pakar Diagnosa Kerusakan Hardware Laptop Menggunakan Metode Forward Chaining,” TeknoIS J. Ilm. Teknol. Inf. dan Sains, vol. 13, no. 2, pp. 263–271, 2023, doi: 10.36350/jbs.v13i2.201.
Y. Ardianto, B. Sutomo, and T. A. Saputri, “Sistem Pakar Diagnosa Kerusakan Printer Berbasis Android Menggunakan Metode Backward Chaining,” J. Comput. Sci. Inf. Syst. J-Cosys, vol. 2, no. 2, pp. 48–52, 2022, doi: 10.53514/jco.v2i2.299.
I. Irwansyah, A. D. Wiranata, T. T. Muryono, and A. Budiyantara, “Sistem Pakar Deteksi Kerusakan Jaringan Local Area Network (Lan) Menggunakan Metode Beckward Chaining Berbasis Web,” Infotech J. Technol. Inf., vol. 8, no. 2, pp. 135–142, 2022, doi: 10.37365/jti.v8i2.150.
N. Ichwannudin, “Sistem Pakar Kerusakan Perangkat Komputer Dengan Metode Backward Chaining Berbasis Telepon Pintar,” JIMTEK J. Ilm. Mhs. Fak. Tek., vol. 1, no. 3, pp. 283–289, 2020.
R. Nur Sa’adah, Metode Penelitian R&D (Research And Development) Kajian Teoretis dan Aplikatif. Malang: Literasi Nusantara, 2020.
S. Yuwana, T. Indarti, and Faizin, Metode Penelitian Dan Pengembangan (Research & Development) Dalam Pendidikan Dan Pembelajaran. Soppeng: UMMPress, 2023. [Online]. Available: https://www.google.co.id/books/edition/Metode_Penelitian_Dan_Pengembangan_Resea/ZY3kEAAAQBAJ?hl=id&gbpv=0
M. Lasena and S. Ahmad, “Sistem Pendukung Keputusan Kelayakan Pemberian Kredit Nasabah Dengan Metode Electre,” Bull. Inf. Technol., vol. 4, no. 2, pp. 232–238, 2023.
H. M. Siregar, “Implementasi Metode Naive Bayes Pada Perancangan Aplikasi Sistem Pakar Diagnosa Bronkiektasis,” Bull. Inf. Technol., vol. 1, no. 3, p. 6, 2020.
G. Rahmadhan, F. Zakariyya, and T. D. Puspitasari, “Sistem Pakar Identifikasi Hama Dan Penyakit Pada Tumbuhan Kakao Menggunakan Metode BFS (Breadth First Search) Dan Certainty Factor Berbasis Android,” J. Teknol. Inf. dan Terap., vol. 9, no. 2, pp. 70–80, 2022, doi: 10.25047/jtit.v9i2.270.
L. Rosid, “Pemanfaatan Literasi Digital Dalam Pembelajaran Pendidikan Agama Islam Dan Budi Pekerti Di SMAN 1 Kandanghaur Kabupaten Indramanyu,” Repository.Uinjkt.Ac.Id, vol. 1, p. 148, 2022, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/62863%0Ahttps://repository.uinjkt.ac.id/dspace/bitstream/123456789/62863/1/11180110000026_LUTHFIATUR ROSID %28.pdf
Syaifuddin, O. Maliki, and H. W. Kamase, “Implementasi Sistem Pakar Android untuk Deteksi Penyakit Tanaman Coklat dengan Metode Certainty Factor,” Bull. Inf. Technol., vol. 4, no. 4, pp. 456–464, 2023, doi: 10.47065/bit.v4i4.1019.
M. S. Farooq et al., “Harnessing AI forward and Backward Chaining with telemetry data for enhanced diagnostics and prognostics of smart devices,” Sci. Rep., vol. 15, no. 1, pp. 1–17, 2025, doi: 10.1038/s41598-025-89266-9.
A. I. Prabowo, G. Susilo, F. Yunita, and S. Informasi, “SISTEM PAKAR MENDETEKSI KERUSAKAN ALAT MUSIK PETIK GITAR DAN BASS MENGGUNAKAN METODE BACKWARD CHAINING BERBASIS WEB,” Transform. J. Inf. Pengemb. Iptek, vol. 17, no. 1, pp. 14–24, 2021.
R. Isnawigati and R. Darwas, “Sistem Pakar Diagnosa Gejala Kecanduan Gadget pada Remaja Menggunakan Metode Backward Chaining,” J. Nas. Komputasi dan Teknol. Inf., vol. 7, no. 5, pp. 1317–1327, 2024.
S. R. Ahmad, S. M, and S. PNua, “Implementasi Metode Simple Additive Weighting (SAW) dalam Pemilihan Sekolah Ramah Anak,” Bull. Inf. Technol., vol. 4, no. 2, 2023, doi: 10.47065/bit.v4i2.618.
Z. Budiarso, H. Listiyono, and A. Karim, “Optimizing LSTM with Grid Search and Regularization Techniques to Enhance Accuracy in Human Activity Recognition,” Journal of Applied Data Sciences, vol. 5, no. 4, pp. 2002–2014, Nov. 2024, doi: 10.47738/jads.v5i4.433.
“View of Decision Support System for Determining the Best School Extracurricular Activities by Combining the ROC and MAUT Methods.” Accessed: Jun. 13, 2025. [Online]. Available: https://journal.fkpt.org/ index.php/comforch/article/view/1493/680
“View of Komparasi Kinerja Algoritma Random Forest dan C4.5 untuk Klasifikasi Harga Mobil.” Accessed: Jun. 13, 2025. [Online]. Available: https://ejurnal.amikstiekomsu.ac.id/index.php/BIIT/article/view/95/56
Copyright (c) 2025 Marlin Lasena, Sulistiawati Rahayu Ningsi Ahmad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).