Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting
Abstract
Stunting is a condition of inhibited linear growth due to chronic malnutrition, which is a serious concern in Indonesia, especially among toddlers. Stunting identification utilizes the parameter of height-for-age z-score (HAZ), with a value of less than -2 SD as a diagnostic indicator. Factors such as socioeconomic conditions, dietary patterns, infections, and the environment influence stunting, making early prevention and intervention efforts crucial. Short-term effects of stunting include delayed motor development and cognitive impairment, while long-term impacts include the risk of chronic diseases in adulthood. Although the global prevalence of stunting has declined, Indonesia still has a high rate, ranking second in Southeast Asia. Cross-sector collaboration and the application of technology, such as Support Vector Machine (SVM) algorithms, can help identify stunting risk factors. In this study, SVM kernels including linear, polynomial, RBF, and sigmoid were evaluated. RBF SVM kernel proved to be the most effective, achieving an accuracy of over 90% with an AUC of 0.926. Collaboration and the use of technology provide hope for addressing stunting in Indonesia, requiring cooperation between the government, NGOs, and the scientific community
References
[2] H. Hatijar, “Angka Kejadian Stunting Pada Bayi dan Balita Pendahuluan,” pp. 12–17, 2023.
[3] S. A. A. P. S. K. Haryani, “Pencegahan Stunting Melalui Pemberdayaan,” J. Pengabdi. Kesehat., vol. 4, no. 1, p. 30, 2021.
[4] D. J. Raiten and A. A. Bremer, “Exploring the nutritional ecology of stunting: New approaches to an old problem,” Nutrients, vol. 12, no. 2, 2020, doi: 10.3390/nu12020371.
[5] UNICEF/WHO/WORLD BANK, “Levels and trends in child malnutrition UNICEF / WHO / World Bank Group Joint Child Malnutrition Estimates Key findings of the 2021 edition,” World Heal. Organ., pp. 1–32, 2021, [Online]. Available: https://www.who.int/publications/i/item/9789240025257
[6] S. Handayani and J. Kebidanan, “SAVE THE NATION ’ S GENERATION FROM THE DANGERS OF STUNTING,” vol. 3, pp. 87–92, 2024, doi: 10.36082/jmswh.v3i2.1082.
[7] Sukmalalana;, D. Putra;, Hafiz;, and V. Cika, “Percepatan Penurunan Stunting Untuk Mewujudkan Sumber Daya Manusia Indonesia Yang Unggul,” Pus. Kaji. Akuntabilitas Keuang. Negara, vol. 1, no. 1, pp. 1–15, 2022, [Online]. Available: https://berkas.dpr.go.id/puskajiakn/analisis-ringkas-cepat/public-file/analisis-ringkas-cepat-public-52.pdf
[8] I. K. A. Wiraguna, E. Setyati, and E. Pramana, “Prediksi Anak Stunting Berdasarkan Kondisi Orang Tua Dengan Metode Support Vector Machine Dengan Study Kasus Di Kabupaten Tabanan-Bali,” Smatika J., vol. 12, no. 01, pp. 47–54, 2022, doi: 10.32664/smatika.v12i01.662.
[9] W. Achmad, “Social Reality Stunting Prevention in Cianjur District,” J. EduHealth, vol. 13, no. 02, pp. 467–477, 2022, [Online]. Available: http://ejournal.seaninstitute.or.id/index.php/healt/article/view/575%0Ahttp://ejournal.seaninstitute.or.id/index.php/healt/article/download/575/463
[10] S. M. J. Rahman et al., “Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach,” PLoS One, vol. 16, no. 6 June 2021, pp. 1–11, 2021, doi: 10.1371/journal.pone.0253172.
[11] I. Rahmi, M. Susanti, H. Yozza, and F. Wulandari, “Classification of Stunting in Children Under Five Years in Padang City Using Support Vector Machine,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 3, pp. 771–778, 2022, doi: 10.30598/barekengvol16iss3pp771-778.
[12] R. Kusumaningrum, T. A. Indihatmoko, S. R. Juwita, A. F. Hanifah, K. Khadijah, and B. Surarso, “Benchmarking of multi-class algorithms for classifying documents related to stunting,” Appl. Sci., vol. 10, no. 23, pp. 1–13, 2020, doi: 10.3390/app10238621.
[13] K. K. Kishore and J. V. Suman, “Prediction of malnutrition in newbornInfants using machine learning techniques,” 2023.
[14] A. N. N. Azmi, S. Khairunniza-Bejo, M. Jahari, F. M. Muharram, and I. Yule, “Identification of a suitable machine learning model for detection of asymptomatic Ganoderma boninense infection in oil palm seedlings using hyperspectral data,” Appl. Sci., vol. 11, no. 24, 2021, doi: 10.3390/app112411798.
[15] S. Syahrial, R. Ilham, Z. F. Asikin, and S. S. I. Nurdin, “Stunting Classification in Children’s Measurement Data Using Machine Learning Models,” J. La Multiapp, vol. 3, no. 2, pp. 52–60, 2022, doi: 10.37899/journallamultiapp.v3i2.614.
[16] M. D. Kurnia, “Klasifikasi Customer Relationship Management Perusahaan Telekomunikasi Seluler Dengan Metode Machine Learning,” vol. 1, no. 4, pp. 63–76, 2023.
[17] C. Aldama and M. Nasir, “Klasifikasi Penyakit Diabetes Menggunakan Metode Support Vector Machine Pada Rumah Sakit Umum Prabumulih,” J. Ilm. Betrik, vol. 14, no. 02, pp. 376–383, 2023, [Online]. Available: https://ejournal.pppmitpa.or.id/index.php/betrik/article/view/117
[18] M. Edris Effendi, I. Yuadi, and I. Puspitasari, “Prediksi Guru Kemungkinan Tetap Bekerja di Sekolah Al Uswah Surabaya Menggunakan Machine Learning,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 129–137, 2023, doi: 10.37034/jidt.v5i2.361.
[19] R. Hadapinigradja Kusumodestoni\, “The 2 st Seminar Nasional dan Prosiding Scitech 2023 OCTAGONAL SHOE RACK DESIGN WITH DESIGN IDEAS,” pp. 218–223, 2023.
[20] P. R. Raamana, “Kernel methods library for pattern analysis and machine learning in python,” vol. 1, pp. 1–7, 2020, [Online]. Available: http://arxiv.org/abs/2005.13483
[21] S. Y. Andriyani, M. S. Lydia, and S. Efendi, “Optimization of Support Vector Machine Algorithm Using Stunting Data Classification,” Prism. Sains J. Pengkaj. Ilmu dan Pembelajaran Mat. dan IPA IKIP Mataram, vol. 11, no. 1, p. 164, 2023, doi: 10.33394/j-ps.v11i1.6619.
[22] M. H. Mohd Zaki, M. A. Mohd Aziz, S. Sulaiman, and N. Hambali, “Student Performance Classification using Support Vector Machine (SVM) with Polynomical Kernel on Online Student Activities,” J. Electr. Electron. Syst. Res., pp. 80–90, 2023, doi: 10.24191/jeesr.v23i1.009.
[23] A. M. Abdulkadium, R. A. A. Shekan, and H. A. Hussain, “Application of Data Mining and Knowledge Discovery in Medical Databases,” Webology, vol. 19, no. 1, pp. 4912–4924, 2022, doi: 10.14704/web/v19i1/web19329.
[24] A. H. Nasyuha et al., “Frequent pattern growth algorithm for maximizing display items,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 19, no. 2, pp. 390–396, 2021, doi: 10.12928/TELKOMNIKA.v19i2.16192.
[25] A. Zy and Wahyu Hadikristanto, “Implementasi Algoritma Metode Naive Bayes dan Support Vector Machine Tentang Pembobolan dan Kebocoran Data di Twitter,” Bull. Inf. Technol., vol. 4, no. 1, pp. 49–56, 2023, doi: 10.47065/bit.v4i1.493.
[26] I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin,” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 118–125, 2022, doi: 10.51977/jti.v4i2.762.
[27] I. S. Al-Mejibli, J. K. Alwan, and D. H. Abd, “The effect of gamma value on support vector machine performance with different kernels,” Int. J. Electr. Comput. Eng., vol. 10, no. 5, pp. 5497–5506, 2020, doi: 10.11591/IJECE.V10I5.PP5497-5506.
[28] J. Shawe-Taylor and S. Sun, “Kernel Methods and Support Vector Machines,” pp. 857–881, 2020, doi: 10.1016/b978-0-12-396502-8.00016-4.
Copyright (c) 2024 Sonya Dian Wahyuni, R. Hadapiningradja Kusumodestoni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


.png)
.png)


