Pengelompokan Data Janjang Panen Kelapa Sawit Menggunakan Algoritma K-Medoids Pada PT SIR MANDAU

Grouping of Palm Oil Harvesting Dates Using the K-Medoids Algorithm at PT SIR MANDAU

  • Lila Agustini * Mail STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Sumarno STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Ika Okta Kirana STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
Keywords: data janjang panen; K-Medoid; Oil palm; clustering

Abstract

Oil palm plantations are almost spread throughout Indonesia. Oil palm is also a tropical plant belonging to the palm family and comes from Africa. Oil palm is a plant with high economic value because it is an oil-producing plant, likewise to Indonesia, one of the producers of palm oil. This research uses data mining techniques in processing or grouping data with the k-medoids clustering method. The k-medoids method is a clustering method that functions to break the dataset into several groups. The advantage of this method is that it can overcome the weakness of the k-means method, which is sensitive to outliers. Another advantage of this method is that the results of the clustering process do not depend on the order in which the dataset is entered. The k-medoids clustering method can be applied to data on oil palm harvest yields based on high, medium, and low yields so that harvest groupings can be known based on these data. It is hoped that this research can provide information to employees about the grouping of oil palm harvesting data, which impacts oil palm yields in the future.

References

G. Abdillah et al., “Penerapan Data Mining Pemakaian Air Pelanggan Untuk Menentukan Klasifikasi Potensi Pemakaian Air Pelanggan Baru Di Pdam Tirta Raharja Menggunakan Algoritma K-Means,” Sentika 2016, vol. 2016, no. Sentika, pp. 18–19, 2016.

Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.

K. Fatmawati and A. P. Windarto, “Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018, doi: 10.24114/cess.v3i2.9661.

D. F. Pramesti, Lahan, M. Tanzil Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017, doi: 10.1109/EUMC.2008.4751704.

N. Pulungan, S. Suhada, and D. Suhendro, “Penerapan Algoritma K-Medoids Untuk Mengelompokkan Penduduk 15 Tahun Keatas Menurut Lapangan Pekerjaan Utama,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 3, no. 1, pp. 329–334, 2019, doi: 10.30865/komik.v3i1.1609.

S. Santoso and R. Nurmalina, “Perencanaan dan Pengembangan Aplikasi Absensi Mahasiswa Menggunakan Smart Card Guna Pengembangan Kampus Cerdas (Studi Kasus Politeknik Negeri Tanah Laut),” J. Integr., vol. 9, no. 1, pp. 84–91, 2017.

M. Silalahi, “Analisis Clustering Menggunakan Algoritma K-Means Terhadap Penjualan Produk Padapt Batamas Niaga Jaya,” Comput. Based Inf. Syst. J., vol. 02, pp. 20–35, 2018.

S. Sindi, W. R. O. Ningse, I. A. Sihombing, F. Ilmi R.H.Zer, and D. Hartama, “Analisis Algoritma K-Medoids Clustering Dalam Pengelompokan Penyebaran Covid-19 Di Indonesia,” Jti (Jurnal Teknol. Informasi), vol. 4, no. 1, pp. 166–173, 2020.

S. Sundari, I. S. Damanik, A. P. Windarto, H. S. Tambunan, J. Jalaluddin, and A. Wanto, “Analisis K-Medoids Clustering Dalam Pengelompokkan Data Imunisasi Campak Balita di Indonesia,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 687, 2019, doi: 10.30645/senaris.v1i0.75.

D. Ardiansyah and W. Walim, “Algoritma c4.5 untuk klasifikasi calon peserta lomba cerdas cermat siswa smp dengan menggunakan aplikasi rapid miner,” J. Inkofar, vol. 1, no. 2, pp. 5–12, 2018.

Dimensions Badge
Published
2022-02-01
How to Cite
[1]
L. Agustini, Sumarno, and I. Okta Kirana, “Pengelompokan Data Janjang Panen Kelapa Sawit Menggunakan Algoritma K-Medoids Pada PT SIR MANDAU”, J. Mach Learn. Data Anal., vol. 1, no. 1, pp. 36-44, Feb. 2022.
Section
Articles