Identifikasi Sampah Berdasarkan Tekstur Dengan Metode GLCM dan GLRLM Menggunakan Improved KNN
Abstract
Inorganic garbage is a type of garbage which takes a long time to decompose naturally, and it is important to recycle this type of garbage to avoid it stacking up in the environment. Before the recycle process, the inorganic garbage will be grouped which needs an identification of its form of material. The digital image processing can be used to create a system which could identify the form of material the inorganic garbage is by analyzing the features. In this research, the feature that will be used is the texture feature. The texture feature will be extracted using the Gray Level Co-Occurrence Matrix, and Gray Level Run Length Matrix method. And for the material of garbage identification will use the Improved KNN classification method. The results of the test by using 50 images as data testing from 5 different material of garbage which is cardboard, glass, metal, paper, and plastic type of garbage have the highest mean of accuracy 90,4% by using the GLRLM method with 135° angle of extraction. Meanwhile the accuracy when combining the extraction methods, which is adding up the value of GLCM and GLRLM, have the highest mean of accuracy 88% with 0° angle of extraction
References
M. Handayani and A. Purwanto, "Pemanfaatan Barang Bekas Untuk Menumbuhkan Sikap Peduli Lingkungan Di SD Budi Mulia Dua Bintaro," Metodik Didaktik, 2019.
D. H. Amelia, "Identifikasi Biometrik Pola Enamel Gigi Menggunakan Metode Grey Level Run Length Matrix (GLRLM) Dan Klasifikasi K-Nearest Neighbor (K-NN) Sebagai Aplikasi Forensik Kedokteran Gigi Berbasis Matlab," Universitas Telkom, Telekomunikasi, Bandung, 2018.
R. U. H. a. D. A. E. P. Purwandari, "Identifikasi Jenis Bambu Berdasarkan Tekstur Daun dengan Metode Gray Level Co-Occurrence Matrix dan Gray Level Run Length Matrix," Jurnal Teknologi dan Sistem Komputer, vol. 6, no. 4, pp. 146-151, 2018.
S. S. Y. &. W. R. Adha, "Klasifikasi Jenis Citra Makanan Tunggal Berdasarkan Fitur Local Binary Patterns dan Hue Saturation Value Menggunakan Improved K-Nearest Neighbor," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 2416-2424, 2019.
R. Munir, "Image Enhancement," in Pengolahan Citra Digital, Bandung, 2004.
R. A. Surya, A. Fadlil and A. Yudhana, "Ekstraksi Ciri Metode Gray Level CoOccurrence Matrix (GLCM) dan Filter," Jurnal Informatika: Jurnal Pengembangan IT, vol. 2, no. 2, 2017.
E. Alvansga, "Pengenalan Tekstur Menggunakan Metode GLCM Serta Modul Nirkabel," 2019.
M. S. Munir, "Klasifikasi Kekurangan Unsur Hara N,P,K Tanaman Kedelai Berdasarkan Fitur Daun Menggunakan Jaringan Syaraf Tiruan," Institut Teknologi Sepuluh Nopember, Surabaya, 2016.
M. Galloway, "Texture Analysis Using Gray Level Run Length Matriks," in Computer Science Center, University of Maryland, 1975, pp. 415-420.
L. Jefry, "Implementasi Metode Run Length Dan Simple Naïve Bayes Untuk Klasifikasi Penyakit Leukemia Berdasarkan Citra Darah," Jurnal Ilmiah Komputer dan Informatika (KOMPUTA), 2016.
F. D. Faustina, "Identifikasi Pola Kerapuhan Tulang Berdasarkan Fitur Tekstur Citra Dental Panaromic Radiograph (DPR) Menggunakan Gray Level Run Length Matrix (GLRLM) dan Support Vector Machine (SVM)," 2019.
S. Wagle, J. A. Mangai and V. S. Kumar, "An Improved Medical Image Classification Model using Data Mining Techniques," 7th IEEE GCC Conference and Exhibition (GCC), Vols. 114-118, 2013.
D. Untari, "DATA MINING UNTUK MENGANALISA PREDIKSI MAHASISWA BERPOTENSI NONAKTIF MENGGUNAKAN METODE DECISION TREE C4.5," Universitas Dian Nuswantoro, Semarang, 2014.
E. Prasetyo, Mengolah Data Menjadi Informasi Menggunakan Matlab, A. Sahala, Ed., Yogyakarta: ANDI, 2014.
Y. G. K, I. Santoso and R. R. Isnanto, "Klasifikasi Citra dengan Matriks Ko-Okurensi Aras Keabuan (Gray level co-occurrence matrix-GLCM) pada Lima Kelas Biji-Bijian," Universitas Diponegoro, Semarang, 2011.
R. Munir, Pengantar Pengolahan Citra, Pengolahan Citra Digital, 2013, pp. 1-10.
Copyright (c) 2021 Kristian Telaumbanua, Sudarto Sudarto, Fitri Butar-Butar, Putri Shania Bilqis

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the EXPLORER right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in EXPLORER.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in EXPLORER.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).