Klasifikasi Data Penduduk Pada Pemilihan Umum Di Kota Binjai Menggunakan Algoritma K-Means (Studi Kasus : KPU Kota Binjai)
Abstract
Population growth is something that continues in an environment both in rural and urban areas. The rapidly increasing number of residents must be re-recorded in a government agency. Likewise, the Binjai City KPU Office must re-record population data, especially residents in the city of Binjai who have the right to carry out the General Election in 2024 by involving the community that has been previously recorded. Problems were also found with data on residents who had moved domiciles but their personal data had already been recorded for general elections in 2024. With that, data collection had to be re-done to select population data so as to produce a new population data status so that data was not found that did not match what it should be. By observing the problems above Data Mining with the Clustering method is very appropriate to be used to generate knowledge of new population data groups to carry out general elections at the KPU Binjai, using the MATLAB application is also very appropriate to choose in this problem so that it can produce output from data mining that can be used in future decision making. This study aims to process data to produce population data in the city of Binjai in the implementation of general elections, implement a system so that it can classify new population data in the middle of old population data and design data grouping in determining population data groups based on criteria conditions at the KPU Office in Binjai city. By using the clustering method that has been used to process population data at general elections in the city of Binjai, it can produce new information from 1000 data that has been tested. From 1000 population data for general elections in Binjai City, 3 clusters are obtained with the results of 7 tests where cluster 1 totals 225 data, cluster 2 has 436 data and cluster 3 has 339 data.
References
REFERENCES
G. Guntoro, L. Costaner, and L. Lisnawita, “Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 14, no. 1, 2019, doi: 10.30872/jim.v14i1.1745.
Ramli, Nurhayati, and R. Saragih, “Jaringan Syaraf Tiruan Memprediksi Kebutuhan Alat Suntik Medis Dirumah Sakit Menggunakan Backpropagation, (Studi Kasus : RSU Bathesda),” JIKSTRA, vol. 3, no. 1, 2021.
R. Maulana, N. Suryani, and D. C. P. Buani, “Sistem Pendukung Keputusan Pemilihan Alat Kontrasepsi Terbaik Metode SMART (Simple Multi Attribute Rating Technique) Bagi Keluaraga Berencana,” EVOLUSI J. Sains dan Manaj., vol. 9, no. 1, 2021, doi: 10.31294/evolusi.v9i1.9940.
L. Y. Dewi, H. L. N. Sinaga, N. A. Pratiwi, and N. Widiyasono, “Analisis Peran Komisi Pemilihan Umum (KPU) dalam Partisipasi Politik Masyarakat di Pilkada serta Meminimalisir Golput,” J. Ilmu Polit. dan Pemerintah., vol. 8, no. 1, 2022, doi: 10.37058/jipp.v8i1.4082.
A. Aryojati, “Persiapan KPU Menjelang Pemilu dan Pilkada 2024,” Pus. Penelit. Badan Keahlian DPR RI, vol. XIV, no. 2, 2022.
D. P. Riau, “Strategi Pengendalian Organisasi dalam Meningkatkan Kinerja Anggaran (Studi Evaluasi Pengisian Aplikasi Smart dan E-Monev dalam Kinerja Anggaran di Kpu Kab/Kota Jawa Timur),” Syntax Lit. ; J. Ilm. Indones., vol. 7, no. 5, 2022, doi: 10.36418/syntax-literate.v7i5.6992.
Y. Agriyansyah and R. Adriadi, “Implementasi Kebijakan Pengelolaan dan Pelayanan Informasi Publik di KPU Kota Bengkulu,” J. Manaj. dan Ilmu Adm. Publik, 2022, doi: 10.24036/jmiap.v4i2.501.
A. Siswanto, “Sistem Pengelolaan Arsip Berbasis Digitalisasi Pada Sub Bagian Umum dan Logistik Kantor KPU Provinsi Sulawesi Selatan,” Econ. Digit. Bus. Rev., vol. 3, no. 1, 2022.
“Pengelolaan Media Sosial KPU Kota Cilegon Sebagai Media Komunikasi : Studi Kasus KPU Kota Cilegon Banten Pilkada Tahun 2020,” J. Interak. J. Ilmu Komun., vol. 6, no. 1, 2022, doi: 10.30596/interaksi.v6i1.8298.
K. A. Ginting, R. Buaton, and M. A. Syari, “Penerapan Data Mining Dalam Pengelompokan Penerimaan Bantuan Untuk UMKM dengan Metode Clustering (Studi Kasus: Kec. Salapian),” J. Inform. Kaputama, vol. 6, no. SEMINAR NASIONAL INFORMATIKA (SENATIKA), pp. 729–738, 2022.
P. W. Kesuma, A. Risalah, and B. P. Purba, “Penerapan Data Mining Dalam Proses Pengelompokkan Data Masyarakat Kurang Mampu di Kota Deli Serdang Menggunakan Metode Clustering,” J. Masy. Inform. Sumatera Utara, vol. 10, no. 5, 2020, doi: 10.14710/jmasif.v7i1.10794.
S. Ramadani, I. Ambarita, and A. M. H. P. Pardede, “Metode K-Means Untuk Pengelompokan Masyarakat Miskin Dengan Menggunakan Jarak Kedekatan Manhattan City Dan Euclidean (Studi Kasus Kota Binjai),” Inf. Syst. Dev., vol. 4, no. 2, Jul. 2019.
A. Ali and L. Musyfufah, “Klasterisasi Pasien BPJS Dengan Metode K-Means Clustering Guna Menunjang Program Jaminan Kesehatan Nasional Di Rumah Sakit Anwar Medika Balong Bendo Sidoarjo,” J. WIYATA Stikes Yayasan Rumah Sakit Dr.Soetomo, vol. 2, no. 1, 2021, doi: 10.47292/joint.v2i2.30.
R. Kurniawan, S. Suhada, and R. Dewi, “Penerapan Algoritma K-Means Clustering Dalam Persentase Merokok Pada Penduduk Umur Di Atas 15 Tahun Menurut Provinsi,” J. Sist. Komput. dan Inform., vol. 2, no. 2, 2021.
S. Oktarian, S. Defit, and Sumijan, “Klasterisasi Penentuan Minat Siswa dalam Pemilihan Sekolah Menggunakan Metode Algoritma K-Means Clustering,” J. Inf. dan Teknol., vol. 2, no. 3, 2020, doi: http://www.jidt.org.
W. Crisnawaty Manalu, A. Muhazir, D. Setiawan, S. Informasi, S. Triguna Dharma, and T. Komputer, “Penerapan Data Mining Untuk Memprediksi Minat Masyarakat Terhadap Asuransi Jiwa Dengan Metode Algoritma C4.5,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 2, no. 1, 2023.
Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, 2020, doi: 10.24114/cess.v5i2.18519.
Copyright (c) 2023 Windy Indah Sary Sinaga

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the EXPLORER right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in EXPLORER.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in EXPLORER.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






.png)















