Penggunaan Algoritma Naïve Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa
Abstract
Giving credit to customers is a routine activity carried out by a cooperative, as happened in the Subur Sari Forest Village Community Institution Cooperative (LMDH) in Pudak Wetan Village, Ponorogo Regency. Non-performing or bad loans often occur due to a lack of thorough analysis in the credit granting process. This happens because the management is less careful in determining which applicants are eligible for loans. Therefore, customer eligibility analysis is fundamental in determining whether a customer is eligible or not to get a loan. One way to determine creditworthiness is to use the Naïve Bayes algorithm. This study aims to apply data mining methods to classify eligible, and ineligible customers based on historical customer data in the past then used to predict the feasibility of future customers using the Naïve Bayes algorithm. The results of testing the credit classification system using the black box stated that the system was able to run according to the algorithm and could determine whether or not the customer deserved credit.
References
E. S. Y. Pandie, “Implementasi Algoritma Data Mining Naive Bayes Pada Koperasi,” J-Icon: Jurnal Komputer dan Informatika, vol. 6, no. 1, pp. 15–20, 2018, doi: 10.35508/jicon.v6i1.350.
T. Arifin, Berani jadi pengusaha, sukses usaha dan raih pinjaman. Gramedia Pustaka Utama, 2018.
I. Elyana, “Decision Support System Untuk Kelayakan Pemberian Kredit Motor Dengan Menggunakan Metode Simple Additive Weighting Pada Perusahaan Leasing,” Jurnal Pilar Nusa Mandiri, vol. 13, no. 1, pp. 85–91, 2017, doi: 10.33480/pilar.v13i1.150.
M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,” Pseudocode, vol. 4, no. 2, pp. 120–128, 2017.
S. Wirahayu, “IMPLEMENTASI ALGORITMA NAIVE BAYES DALAM PENENTUAN PEMBERIAN KREDIT (Studi Kasus: PT. Swadaya Langgeng Bersama Jambi).” STIKOM Dinamika Bangsa Jambi, 2019.
G. S. Linoff and M. J. A. Berry, Data mining techniques: for marketing, sales, and customer relationship management. John Wiley & Sons, 2011.
M. Kantardzic, Data mining: concepts, models, methods, and algorithms. John Wiley & Sons, 2011.
S. V. Gaikwad, A. Chaugule, and P. Patil, “Text mining methods and techniques,” International Journal of Computer Applications, vol. 85, no. 17, 2014.
S. Sucipto, “Sales Transaction Result Analysis for Increase Prediction of Income,” Fountain of Informatics Journal, vol. 3, no. 2, pp. 31–35, 2018.
Sucipto, Kusrini, and E. L. Taufiq, “Classification method of multi-class on C4.5 algorithm for fish diseases,” in Proceeding - 2016 2nd International Conference on Science in Information Technology, ICSITech 2016: Information Science for Green Society and Environment, Balikpapan: Institute of Electrical and Electronics Engineers Inc., 2016, pp. 5–9. doi: 10.1109/ICSITech.2016.7852598.
D. A. Kurniawan and D. Kriestanto, “Penerapan Naã Ve Bayes Untuk Prediksi Kelayakan Kredit,” JIKO (Jurnal Informatika dan Komputer), vol. 1, no. 1, 2016, doi: 10.26798/jiko.2016.v1i1.10.
S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 7, no. 1, 2020, doi: 10.30656/prosisko.v7i1.2129.
A. Vega Vitianingsih et al., “Performance Comparison of AHP and Saw Methods For Selection of Doc Broiler Chicken Suppliers,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 7, no. 1, pp. 54–67, Feb. 2023, doi: 10.29407/INTENSIF.V7I1.18634.
D. Hidayat Kusuma, M. N. Shodiq, I. K. Fitriani, T. Informatika, and P. N. Banyuwangi, “Parallel Class Ranking Model Using Analytic Hierarchy Process With Multi Criteria,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 4, no. 1, pp. 90–107, Feb. 2020, doi: 10.29407/INTENSIF.V4I1.13769.
S. Sunardi, A. Fadlil, and N. M. P. Kusuma, “Comparing Data Mining Classification for Online Fraud Victim Profile in Indonesia,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 7, no. 1, pp. 1–17, Feb. 2023, doi: 10.29407/INTENSIF.V7I1.18283.
I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation,” Soft Computing, vol. 25, no. 3, pp. 2277–2293, 2021, doi: 10.1007/s00500-020-05297-6.
A. F. Watratan and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7–14, 2020, doi: 10.52158/jacost.v1i1.9.
S.-B. Kim, K.-S. Han, H.-C. Rim, and S. H. Myaeng, “Some effective techniques for naive bayes text classification,” IEEE transactions on knowledge and data engineering, vol. 18, no. 11, pp. 1457–1466, 2006, doi: 10.1109/TKDE.2006.180.
K. Vembandasamy, R. Sasipriya, and E. Deepa, “Heart diseases detection using Naive Bayes algorithm,” International Journal of Innovative Science, Engineering & Technology, vol. 2, no. 9, pp. 441–444, 2015.
S. Lestari, A. Akmaludin, and M. Badrul, “Implementasi Klasifikasi Naive Bayes Untuk Prediksi Kelayakan Pemberian Pinjaman Pada Koperasi Anugerah Bintang Cemerlang,” PROSISKO: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, vol. 7, no. 1, 2020, doi: 10.30656/prosisko.v7i1.2129.
Copyright (c) 2023 Ika Nurjanah, Jamilah Karaman, Ida Widaningrum, Dyah Mustikasari, Sucipto Sucipto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors retain copyright and grant the EXPLORER right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in EXPLORER.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in EXPLORER.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






.png)















