e ! Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Combination of Sequitur and Leveinstein Algorithms for Text File
Compression

Muhammad Hasan
Faculty of Computer Science & Information Technology, Informatics Engineering Study Program, Budi Darma University, Medan,
Indonesia
Email: mhasanhsb@gmail.com
Email Correspondent: mhasanhsh@gmail.com

Abstract- - Data is one of the main things in computer science engineering (ICT) problems, data can mean a situation, image, sound,
letter, number, mathematics, language or other symbols. Facts that often occur about data are the need for storage capacity and the
need for Data transfer time, which is a case that must be observed in this requirement, is caused by the increasing amount of data that
must be stored in RAM memory. Based on the results of the tests carried out: Files compressed by the sequitur algorithm make it easier
to use the internet so that the time required will be shorter and the possibility of download and upload jobs failing will be smaller. Then
transferring files over the network will be faster, the delivery time depends on whether the provider is fast or not and the size of the
file to be sent and helps in reducing the size of the file so that it can reduce the storage capacity of a memory / RAM.

A text file is a collection of various related information in text form, text files originating from documents, letters, numbers and symbols
will be compressed with a sequitur algorithm. The need for large storage capacity seems increasingly important. This need is caused
by the increasing amount of data stored over time, especially for the business and banking world. These companies generally need very
large capacity to store all important data and files.

The Leveinstein algorithm is a development of the sequitur algorithm, where a file approximates the difference between a string and
the source string. The difference value between strings is expressed as the edit distance value. In contrast to the Leveintein algorithm
which works on a character-by-character basis, the sequitur algorithm operates by enforcing uniqueness diagram constraints and
usability rules.

Keywords: Sequitur Algorithm, Levenstein Algorithm, Text File.

1. INTRODUCTION

With the rapid development of technology, computerization has become a major part of the world of work. Data that must
be stored every day will make computerized storage capacity increasingly low. The larger the size of the data stored, the
smaller the computerized storage capacity. This problem is often faced by computer users who lack sufficient data storage
media

To overcome the problem of data storage and access speed, one way is by compressing the stored information data. The
information in question is information in the form of text (a file containing plain text). As we know, the size of text files
is smaller compared to the size of images/images, and we also know that some agencies usually always store text data for
a long period of time because it will be needed at any time. However, to streamline data storage space and obtain faster
access times, it is deemed necessary to compress this text file.

Data compression is a technique for reducing the file size of the original file. All file types can be subjected to a
compression process. One of them is a text file. The sequitur algorithm is a compression algorithm that can be used to
compress the file. Levenstein's algorithm is an algorithm used to find the fewest number of operations to transform a
string into another string. This algorithm performs compression using a formula, where the text is replaced with an index
obtained from a "dictionary".

In 2013, Adi Adiono researched text file compression techniques using the sequitur and Levenstein methods, which
showed that the results of text file compression did not change the quality of the text file, it only reduced the bits in the
file. Likewise, in the decompression process, the result will be the same as the original file, even if it has been repeated
once or twice. So the sequitur and levenstein methods are an alternative for compressing text file data [2].

With this, the author uses the Sequitur and Levenstein algorithm to find out how the compression performance is, if it is
done by compressing text files to provide benefits in storage and requires less memory space compared to uncompressed
text files.

2. RESEARCH METHODOLOGY

2.1. Compression

The compression process is the process of reducing the size of data to produce a digital representation that is compact

but can still represent the quantity of information contained in the data. The term compression is often also called source
coding, data compression, bandwidth compression, and signal compression [2].
Data and information are two different things. Data contains information. However, not all parts of the data are related to
that information or in a piece of data there are parts of data that are repeated to represent the same information. The
success of data compression depends on the size of the data itself and the type of data that allows it to be compressed,
usually several components in the data that are more general in nature than others are often used in data compression
algorithms that utilize this property.

Copyright © 2024 Muhammad Hasan, Page 23
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

e l Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

This is called redundancy. The greater the redundancy in the data, the higher the success rate of data compression. In the
data compression process, there is a general concept of probability which shows a measure of how much information is
contained in a data series or what is called entropy which can be represented mathematically (Ferrianto Gozali & Mervyn,
2004).

2.1.1. Benefits of Compression

Some of the benefits of data compression are:

1. Reduce data size

2. Simplifies the process of storing data on media

3. Speed up the sending process on various types of connections.

Based on the type of code map used to convert the initial message (input file contents) into a set of codewords,

compression methods are divided into 2 (two) groups, namely:

1. Static Method
Uses a code map that is always the same. This method requires two phases (two-pass): The first phase is to calculate
the probability of appearance of each character/symbol and determine the code map, and the second phase is to
convert the message into a code to be transmitted.

2. Dynamic (adaptive) method
Uses code maps that may change over time. This method is called adaptive because the code map is able to adapt to
changes in the characteristics of the file contents during the compression process. This method is one-pass, because
it only requires one reading of the file contents [3].

2.2. Types of Compression

Based on the information content of the data compression results, data compression can be grouped into 2 (two)
types, namely lossless compression and lossy compression.

2.2.1. Lossy Compression

Lossy Compression is compression where the decompression results of the compressed text file are not the same as
the original text file because there is information lost, but it can still be detected by eye perception. The eye cannot
distinguish small changes in the image. This method produces a higher compression ratio than the lossless method. Most
lossy data compression settings have different compression levels. This is done so that the compression is more effective
and the information contained in the message is not changed and lost. Lossy data compression is effective when applied
to digitized analog data storage such as video images and sound.

Lossy Compression data compression which produces compressed data files that cannot be returned to data before being
completely compressed. When the compressed data is decoded again, the decoded data cannot be returned to be the same
as the original data but there are parts of the data that are lost. [8]

3.26 o| Algoritma Coding [000110001010110 _

0001100010101101

A
o
o)

Algoritma Decoding

Figure 1.. Lossy Compression illustration
2.2.2. Lossless compression

Lossless compression is image compression where the decompression results of the compressed text file are not the
same as the original text file because there is information lost. Unfortunately, the compression ratio of text files with this
method is very low. Many applications require seamless compression, such as radiography applications, compression of
text files resulting from medical diagnoses or detailed images, where even the slightest loss of images will cause
unexpected results.

In lossless compression, because it must maintain the perfection of information, there is only a coding and decoding
process, there is no quantitation process. This type of compression is suitable for application to database files, spread
sheets, word processing files, biomedical images, and so on. [2].

Copyright © 2024 Muhammad Hasan, Page 24
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

i I Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

BAABA Algoritma Coding 000011100101011
00001110010101 | Algoritma Decoding BAABA R

Figure 2.Lossless Compression illustration
2.3. Levenstein's algorithm

This Levenstein algorithm is known for non-negative integers and was created by Vladimir Leveinstein in 1968.
Both encoding and decoding are multi-step processes (Salomon, 2007).
The Levenstein code for zero is a single 0. For the positive number code n, here are the encoding steps.
Set the first number of C to 1. Place the code-so-far in the empty string.
Take the binary value of n without the leading 1 and add it to the code so far
This.
Denote M as the number of bits added in stage 2.
If M #0, add 1 to C and do step 2 again, but with the value M instead of n.
If M =0, add 1 followed by 0 in C to the code-so-far and stop.
For the example case, we assume n = 18. The binary value of 18 is 10010, we take 0010 and add it after 1. Add 1 to
the code, then count the number of characters in 0010, we get 4. Add back 1, Take the value 00, add behind that
addition. Repeat these steps until we get the value M = 0, then add 10. So 18 in the Levenstein code is
11110j0j00|0010.

NogaMwdE

Table 1. Levenstein Code Table (Salomon, 2007)

N Kode Levenstein N Kode Leveinstein
0 0 9 111001 001
1 10 10 111001 010
2 110 0 11 111001 011
3 110 1 12 111001 100
4 1110 0 00 13 111001 101
5 1110 0 01 14 111001 110
6 1110 0 10 15 111001 111
7 1110 0 11 16 111100 1 00 0000
8 111001 000 17 111100 100 0001

Decoding is done as follows:

1. Set C with the number of consecutive numbers 1 before the first number 0.

2. If C =0, the decoded value is zero, stop.

3. Set N =1, and repeat step 4 (C-1) times.

4. Read N bits, add 1, and assign the resulting bitstring to N (thus removing the previous value from N). The string
assigned to N in the last iteration is its decoded value.

For example, let's take the Levenstein code 11110|0]00|0010. The decoder first counts the number of 1s before Os and

finds that there are 4 iterations. Then read 0 and add the leading 1 to 10. Decode 10 and find that the number of bits in

the binary representation of the codeword length is equal to 2. Then read 00 and add the leading 1 to 100. This means that

the length of the binary representation is equal to 4. Finally, read 0111 , add prefix 1 and decode 10111, which is 23

3. RESULT AND DISCUSSION

3.1. Implementation of the Sequitur Algorithm

Before carrying out the compression process using the sequitur algorithm, the author determines the string that will
be used. Suppose a text file contains the string “CHILDREN_MAIN_GAME?”. It must be known in advance that the
string "ANAK-ANAK_MAIN_PERMAINAN" consists of 24 characters, where 1 character is equal to (=) 1 bitand 1
bit is equal to (=) 8 bits, then the total string before compression is 24 bits or equal to (=) 192 bits.

To find out the size of the string "ANAK-ANAK_MAIN_ GAMES", you can see the table as follows:

Copyright © 2024 Muhammad Hasan, Page 25
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

e ! Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Table 2 String Size Before Compression

Karakter Frekuensi ASCII Desimal ASCII Bit Bit x
Binary Frekuensi

A 7 65 01000001 8 56

N 5 78 01001110 8 40

Sp (spasi) 3 32 00100000 8 24
K 2 75 01001110 8 16

M 2 77 01001011 8 16

| 2 73 01001001 8 16

P 1 80 01000101 8 8

E 1 69 01000101 8 8

R 1 82 01000111 8 8
Jumlah bit x frekuensi 192

A text file that has known strings and the resulting number of each frequency of occurrence, then the next process is the
compression process using the sequitur algorithm.

In the sequitur algorithm, the existing string is then processed to get a duplicate string or in other words 2 characters or 2
letters that appear more than once. Then the character will be checked, if a pair appears more than once then the pair is
changed to a non-terminal symbol.

Initial string : CHILDREN_MAIN_GAME

String to lowercase : kids_play_games

3.2 Sequitur Algorithm Process

As explained above, a string that has been converted to lowercase will then be checked to see if any pairs appear
more than once. From the string "anak_anak_main_permainan", the character pair "an" appears three times. So according
to the principle of performance of this sequitur algorithm, the character pair "an" will be changed to a non-terminal
symbol, namely to "A". So a new string is formed as "Aak_Aak_main_permainA".

Then, from the new string, it will be checked again to see if there are pairs of characters that appear more than once. After
checking again, it turned out that the character pair "Aa" appeared more than once, namely twice. Therefore, the character
pair "Aa" will be changed to a non-terminal symbol, namely the symbol "B". So that it forms the string "Bk_Bk_main_
permainA". In the new string, it will be checked to see if any pair of characters appears more than once. After checking
again, it turned out that the character pair "Bk" appeared more than once, namely twice. Therefore, the character pair
"Bk" will be changed to a non-terminal symbol, namely the symbol "C". So that it forms the string "C-C_main permainA".
Then, from the new string, it will be checked again to see if there are pairs of characters that appear more than once. After
checking again, it turned out that the character pair "ma" appeared more than once, namely twice. Therefore, the character
pair "ma" will be changed to a non-terminal symbol, namely the symbol "D". So that it forms the string "C-C_Din_
perDinA". In the new string, it will be checked to see if any pair of characters appears more than once. After checking
again, it turned out that the character pair "Di" appeared more than once, hamely twice. Therefore, the character pair "Di"
will be changed to a non-terminal symbol, namely the symbol "E". So that it forms the string "C-C_En perEnA".

In the new string, it will be checked to see if any pair of characters appears more than once. After checking again, it turned
out that the character pair "En" appeared more than once, namely twice. Therefore, the character pair "En" will be changed
to a non-terminal symbol, namely the symbol "F". So that it forms the string "C-C_F_perFA".

The overall process of this sequitur algorithm can be contained in table form which is presented as follows:

Table 3. Sequitur Algorithm Process

Process Strings Duplicate Symbol Rule Resulting Delete Rule
Diagramon Formation String
String (Non-
Terminal)
1 anak- anak main An A A=an Aak Aak
permainan main -
permainA
2 Aak Aak main An A A=an Bk Bk main
permainA Aa B B=Aa permainA -

Copyright © 2024 Muhammad Hasan, Page 26
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

i I Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)

DOI: 10.47065/mis.v2i3.1914

https://journal.fkpt.org/index.php/MIS

3 Bk Bk main permainA An A A=an C C main
Aa B B=Aa permainA -
Bk C C =Bk
Table 4. Sequitur Algorithm ProcessContinued
Process Strings Duplicate Diagram Symbol Formation Rule Resulting Delete
on String (Non-Terminal) String Rule
1 C C main An A =an CC Din
permainA Aa B B=Aa perDinA -
Bk C C=Bk
Ma D D =ma
2 C CDin An A A=an C C En perEnA
perDinA Aa B B =Aa -
Bk C =Bk
ma D =ma
Di E E =Di
3 CC En An A =an C C F perFA
perEnA Aa B B = Aa -
Bk C =Bk
Ma D D=ma
Di E E=Di
En F F =En
4 CCF An A A=an
perFA Aa B B = Aa - -
Bk C C=Bk
Ma D D=ma
Di E E=Di
En F F =En

3.3 Dictionary

In this case, the dictionary functions as a replacement for a temporary database, which means that in the process this
dictionary will store the results of processes that have been carried out in the previous process to produce return data in
the decompression process later. The dictionary of the processes that have been carried out can be seen in the following

table:

Table 5. Dictionary

Proses Aturan Rule
1. A=an
2. A=an
B =Aa
3. A=an
B=Aa
C=Bk
4. A=an
B =Aa

Copyright © 2024 Muhammad Hasan, Page 27
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

e l Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

C=Bk
D =ma
5. A=an
B =Aa
C=Bk
D =ma
E=Di
6 A=an
B =Aa
C=Bk
D =ma
E = Di
F=En

3.4. Sequitur Algorithm Decompression

This decompression process aims to make the string that has been compressed return to its original state before being
compressed. Therefore, every compression process is always accompanied by decompression. From this statement, the
author will explain how to decompress the sequitur algorithm with previously processed strings.

It is known that the string that has been compressed is the string "C-C_F_perFA". In the sequitur algorithm, this algorithm
process has rules where in these rules there are symbols A, B, C, D. E, and F. Each symbol has a pair of repeated
characters.

For more clarity on the decompression algorithm sequitur can be seen in the following table:

Table 6 Sequitur Decompression Process

Process
Compression Rules Rule Description Strings After
Strings Decompression
Simbol “A” diganti dengan pasangan
1 C-C_F_perFA A= an karakter “an Anak-anak _F_perFA
Simbol “B” diganti dengan rule “Aa”
) Anak-anak B=Aa Aak-aak _F_perFA
_F_perFA
Simbol “C” diganti dengan rule “Bk”
3 Aak-aak C=Bk Bk-Bk _F _perFA
_F _perFA
Simbol “D” diganti dengan rule “ma” C-C_Din_perDinA
4 C-C D=ma
_main_permainA
Cc-C Simbol “E” diganti dengan rule “Di” C-C _En_perEnA
5 _Din_perDinA E=Di
C-C _En_perEnA Simbol “F” memiliki rule “En”.
6 F=En

Copyright © 2024 Muhammad Hasan, Page 28
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

e l Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

anak- anak main

permainan

3.5. Levenstein Algorithm Compression

After carrying out the compression process using the sequitur algorithm, the next process is calculating the total bit
string that has been processed using the Levenstein algorithm.

a. Bit calculation with the Levenstein algorithm can be seen as follows:

Table 7. Compression process with the Levenstein algorithm

Character Frequency Levenstein Bit Bit * Frequency
Code
Sp (spasi) 2 0 1 2
C 2 10 2 4
F 2 1100 4 8
- 1 1101 4 4
A 1 1110000 7 7
P 1 1110001 7 7
e 1 1110010 7 7
R 1 1110011 7 7
Jumlah Bit x Frekuensi 46 bit

After knowing the compression results, the compression results can be measured or calculated as follows:

ukuran bit data setelah dikompresi
Cr =100% — - - - X 100%
ukuran bit data sebelum dikompresi

Cr = 1009 — —obit
e AT YT

Cr =100% — 76%
Cr = 24%

X 100%

From the results of the compression ratio calculation, it turns out that the compression process using the sequitur algorithm
is 24% more efficient on the capacity available.

Combining the resulting Levenstein code bit strings, the following binary is obtained:
10110110 01100011 10001111 00101110 01111001 110000 (total number is 46 bits).
Check the length of the bit string.

If the remainder for the string length of 8 bits is 0, then add 8 "0" bits. Express it with the final bit. Meanwhile, if the
remainder for the length of the bit string to 8 is n(1,2,3,4,5,6,7), then add 0 as much as 7 - n followed by the number "1"
at the end of the bit string, denote it by L, denote it by bit. end. Because the number of bit strings that have been compressed
is 46 bits and is not divisible by 7, the calculation is as follows:

N= (Number of compressed string bits)/7

_ Jumlah bit string hasil kompresi
B 7

46

7
=6
Based on the results of the operation above, it is concluded that the remainder for the 46 bit string is 6, so n = 6.
To find padding, look as follows:
=7-n+“1”
=7-6+“1"=1

Copyright © 2024 Muhammad Hasan, Page 29
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

e ! Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

then the binary compression result above will be added with 1 bit "0" followed by bit 1", so that the bit padding is
11000001

Looking for Flagbits

To find flagbits, use the formula 9 - 6 where n is the number of padding bits so that it becomes 9 —6 =9 -6 = 3, represented
in binary form 00000011.

This flagbits value is converted into binary with 8 bit representation to become 00000011. This flagbits value will be
added after the padding bits that were obtained previously.

The final result of the compression process (in binary form) is:
10110110 01100011 10001111 00101110 01111001 11000001 00000011
Grouping compressed binaries

The binary resulting from compression above will be grouped into 8 bits per group, so that characters can be produced
from each group of bits, the results are shown in table 3.5.

Table 8. Grouping of compressed binaries

Biner Desimal Karakter
10110110 182 1
01100011 99 C
10001111 143
00101110 46
01111001 121 A
11000001 193 A
00000011 3

Jumlah Bit Hasil Kompresi 56 bit

h. Based on the compression results that have been obtained, the parameter values of compression ratio, compression
ratio and redurancy can be calculated:

data bit size before compression 192 bit

Rc = = = 3,42
= “data bit size after compression 56 bit
udata bit size before compression 56 bit
— - X 100% = — X 100%
data bit size after compression 192 bit
= 29%

Rd =100% — Cr
=100% — 29% = 71%

Based on calculations using compression parameters for the contents of the material file above, the Rc result above before
compression is 13.42 bits times the size of the data after compression. Meanwhile, the Cr result above means that after
compression the data size is 29% of the data before compression and Rd is 72%, which is data that has been compressed
or missing data.

3.6. Levenstein Decompression Process

After carrying out the compression process using the sequitur algorithm, the next process is calculating the total bit string
that has been processed using the Levenstein algorithm. The binary material that has been compressed is:

10110110 01100011 10001111 00101110 01111001 11000001 00000011

The next step takes the last 8 bits of the string to be decompressed, represented in decimal form, namely 3, expressed as
n, then uses the 7+3 formula to return the bits to their original state, namely 7+n = 7+3 = 10.

Then remove 10bits from the end of the bit string so it becomes

10110110 01100011 10001111 00101110 01111001 110000

Next, check the first bit, if it is in the Levenstein code table in the Levenstein code dictionary in table 3, then change the
string accordingly.

Table 9. Bit Checking and Decompression Process

Index Levenstein Value Description Character

Copyright © 2024 Muhammad Hasan, Page 30
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

i I Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)

DOI: 10.47065/mis.v2i3.1914

https://journal.fkpt.org/index.php/MIS

1 1 There isn't any
2 10 There is C
3 1 There isn't any
4 11 There isn't any
5 110 There isn't any
6 1101 There is -
7 1 There isn't any
8 10 There is C
9 0 There isn't any Spasi
10 11 There isn't any
11 111 There isn't any
12 11100 There is F
13 11101 There isn't any
14 111011 There isn't any
15 1110110 There isn't any
Table 10. Bit Checking and Advanced Decompression Process
Index Levenstein Value Description Character
16 11101100 There isn't any
17 0 There is Spasi
18 11 There isn't any
19 111 There isn't any
20 1110 There isn't any
21 1110001 There is
22 1110010 There is E
23 1110011 There is
24 1 There isn't any
25 11 There isn't any
26 111 There isn't any
27 1100 There is F
28 11100 There isn't any
29 111000 There isn't any
30 1110000 There is A

The checking process as in table 3.6 above is carried out until the initial string "C-C_F_perFA" is found

4. CONCLUSION

The conclusions that can be drawn after designing a text file compression application by applying the Sequitur
algorithm are:

1. Applying the sequitur algorithm to carry out the encryption process for message characters to produce ciphertext.
Carry out the process of grouping the characters into several columns, where each column will contain three message
characters. Perform matrix multiplication between message characters and the key used. The values resulting from
the matrix multiplication process will be modulated, so that the final result of the modulation process is a ciphertext.

Copyright © 2024 Muhammad Hasan, Page 31
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

i ! Vol 2, No 3, Juli 2024, Hal. 23 - 32

ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

2. Application of the Levenstein algorithm to compress text files containing previously encrypted text. The data is first
analyzed by creating a table of the frequency of occurrence of each symbol. The frequency table has attributes in the
form of ASCII symbols and frequencies. The data that has the smallest frequency of appearance is selected as the
first node in this algorithm, from these two nodes a parent node is created which records the frequency of the first
two nodes.

3. Reducing the size of the text file using the Sequitur and Levenstein algorithms, which can be done using compression
techniques, where each character (plaintext) will be encrypted. The encryption process is the change of each message
character into another form whose meaning will no longer be understood as a result of this change (ciphertext).

4. Designing an application using Visual Basic 2008 for placing inscribed text files is a step that has a positive impact
on securing text files as well as saving data storage capacity, where the positive impact is in the form of convenience
and time effectiveness.

5. used to perform encoding processing and compression of abstracted text files.

REFERENCES

[1] (2010). In E. Jubilee, Rahasia Manajemen File (p. 144). Indonesia: Elex Media Komputindo.

[2] Marimin. (2004). Teknik Dan Aplikasi Pengambilan Keputusan Kriteria Majemuk. Jakarta,
Indonesia: Grasindo.

[3] (2016). In M. Muslihudin, Oktafianto, & A. Pramesta (Ed.), Analisa Dan Perancangan Sistem
Informasi Menggunakan Model Terstruktur Dan UML. Yogyakarta, Indonesia: Andi.

[4] (2015). In H. Nugroho, Matematika Diskrit Dan Implementasinya Dalam Dunia Teknologi
Informasi. Yogyakarta, Indonesia: deepublish.

[5] Nurdam, N. (2014). Sequence Diagram Sebagai Perkakas Perancangan Antarmuka Pemakai.
Ultimatics , VI (2085-4552), 21-25.

[6] Putra, D. (2010). In D. Putra, & Westriningsih (Ed.), Pengolahan Citra Digital. Yogyakarta,
Indonesia: Andi.

[7] (2010). In D. Salomon, & G. Motta, Handbook Of Data Compression. New York, Amerika:
Springer London Dordrecht.

[8] Sulistyorini, P. (2009). Pemodelan Visual Dengan Menggunakan UML Dan Rational Noise.
Jurnal Tekhnik Informasi Dinamika , XIV (0854-9524), 23-29.

[9] Suryasari, Callista, A., & Sari, J. (2012). Rancangan Aplikasi Customer Service Pada PT. Lancar
Makmur Besama. Jurnal Sistem Informasi (JSI) , 1V (2085-1588), 468-476.

[10] (2004). In F. Wahid, Dasar-Dasar Algoritma Dan Pemrograman. Yogyakarta, Indonesia:
Andi.

[11] Wedianto, A., Sari, H. L., & H, Y. S. (2016). Analisa Perbandingan Metode Filter Gaussian,
Mean Dan Median Terhadap Reduksi Noise. Media Infotama , XII, 21-30.

[12] Wibowo, H. R. (2014). Buku Pintar VB.Net. Jakarta, Indonesia: Elex Media Komputindo.

Copyright © 2024 Muhammad Hasan, Page 32
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

