
Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 23
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

Combination of Sequitur and Leveinstein Algorithms for Text File

Compression

Muhammad Hasan

Faculty of Computer Science & Information Technology, Informatics Engineering Study Program, Budi Darma University, Medan,

Indonesia

Email: mhasanhsb@gmail.com

Email Correspondent: mhasanhsb@gmail.com

Abstract- - Data is one of the main things in computer science engineering (ICT) problems, data can mean a situation, image, sound,

letter, number, mathematics, language or other symbols. Facts that often occur about data are the need for storage capacity and the

need for Data transfer time, which is a case that must be observed in this requirement, is caused by the increasing amount of data that

must be stored in RAM memory. Based on the results of the tests carried out: Files compressed by the sequitur algorithm make it easier

to use the internet so that the time required will be shorter and the possibility of download and upload jobs failing will be smaller. Then

transferring files over the network will be faster, the delivery time depends on whether the provider is fast or not and the size of the

file to be sent and helps in reducing the size of the file so that it can reduce the storage capacity of a memory / RAM.

A text file is a collection of various related information in text form, text files originating from documents, letters, numbers and symbols

will be compressed with a sequitur algorithm. The need for large storage capacity seems increasingly important. This need is caused

by the increasing amount of data stored over time, especially for the business and banking world. These companies generally need very

large capacity to store all important data and files.

The Leveinstein algorithm is a development of the sequitur algorithm, where a file approximates the difference between a string and

the source string. The difference value between strings is expressed as the edit distance value. In contrast to the Leveintein algorithm

which works on a character-by-character basis, the sequitur algorithm operates by enforcing uniqueness diagram constraints and

usability rules.

Keywords: Sequitur Algorithm, Levenstein Algorithm, Text File.

1. INTRODUCTION

With the rapid development of technology, computerization has become a major part of the world of work. Data that must

be stored every day will make computerized storage capacity increasingly low. The larger the size of the data stored, the

smaller the computerized storage capacity. This problem is often faced by computer users who lack sufficient data storage

media

To overcome the problem of data storage and access speed, one way is by compressing the stored information data. The

information in question is information in the form of text (a file containing plain text). As we know, the size of text files

is smaller compared to the size of images/images, and we also know that some agencies usually always store text data for

a long period of time because it will be needed at any time. However, to streamline data storage space and obtain faster

access times, it is deemed necessary to compress this text file.

Data compression is a technique for reducing the file size of the original file. All file types can be subjected to a

compression process. One of them is a text file. The sequitur algorithm is a compression algorithm that can be used to

compress the file. Levenstein's algorithm is an algorithm used to find the fewest number of operations to transform a

string into another string. This algorithm performs compression using a formula, where the text is replaced with an index

obtained from a "dictionary".

In 2013, Adi Adiono researched text file compression techniques using the sequitur and Levenstein methods, which

showed that the results of text file compression did not change the quality of the text file, it only reduced the bits in the

file. Likewise, in the decompression process, the result will be the same as the original file, even if it has been repeated

once or twice. So the sequitur and levenstein methods are an alternative for compressing text file data [2].

With this, the author uses the Sequitur and Levenstein algorithm to find out how the compression performance is, if it is

done by compressing text files to provide benefits in storage and requires less memory space compared to uncompressed

text files.

2. RESEARCH METHODOLOGY

2.1. Compression

The compression process is the process of reducing the size of data to produce a digital representation that is compact

but can still represent the quantity of information contained in the data. The term compression is often also called source

coding, data compression, bandwidth compression, and signal compression [2].

Data and information are two different things. Data contains information. However, not all parts of the data are related to

that information or in a piece of data there are parts of data that are repeated to represent the same information. The

success of data compression depends on the size of the data itself and the type of data that allows it to be compressed,

usually several components in the data that are more general in nature than others are often used in data compression

algorithms that utilize this property.

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 24
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

This is called redundancy. The greater the redundancy in the data, the higher the success rate of data compression. In the

data compression process, there is a general concept of probability which shows a measure of how much information is

contained in a data series or what is called entropy which can be represented mathematically (Ferrianto Gozali & Mervyn,

2004).

2.1.1. Benefits of Compression

Some of the benefits of data compression are:

1. Reduce data size

2. Simplifies the process of storing data on media

3. Speed up the sending process on various types of connections.

Based on the type of code map used to convert the initial message (input file contents) into a set of codewords,

compression methods are divided into 2 (two) groups, namely:

1. Static Method

Uses a code map that is always the same. This method requires two phases (two-pass): The first phase is to calculate

the probability of appearance of each character/symbol and determine the code map, and the second phase is to

convert the message into a code to be transmitted.

2. Dynamic (adaptive) method

Uses code maps that may change over time. This method is called adaptive because the code map is able to adapt to

changes in the characteristics of the file contents during the compression process. This method is one-pass, because

it only requires one reading of the file contents [3].

2.2. Types of Compression

Based on the information content of the data compression results, data compression can be grouped into 2 (two)

types, namely lossless compression and lossy compression.

2.2.1. Lossy Compression

Lossy Compression is compression where the decompression results of the compressed text file are not the same as

the original text file because there is information lost, but it can still be detected by eye perception. The eye cannot

distinguish small changes in the image. This method produces a higher compression ratio than the lossless method. Most

lossy data compression settings have different compression levels. This is done so that the compression is more effective

and the information contained in the message is not changed and lost. Lossy data compression is effective when applied

to digitized analog data storage such as video images and sound.

Lossy Compression data compression which produces compressed data files that cannot be returned to data before being

completely compressed. When the compressed data is decoded again, the decoded data cannot be returned to be the same

as the original data but there are parts of the data that are lost. [8]

Figure 1.. Lossy Compression illustration

2.2.2. Lossless compression

Lossless compression is image compression where the decompression results of the compressed text file are not the

same as the original text file because there is information lost. Unfortunately, the compression ratio of text files with this

method is very low. Many applications require seamless compression, such as radiography applications, compression of

text files resulting from medical diagnoses or detailed images, where even the slightest loss of images will cause

unexpected results.

In lossless compression, because it must maintain the perfection of information, there is only a coding and decoding

process, there is no quantitation process. This type of compression is suitable for application to database files, spread

sheets, word processing files, biomedical images, and so on. [2].

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 25
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

Figure 2.Lossless Compression illustration

2.3. Levenstein's algorithm

This Levenstein algorithm is known for non-negative integers and was created by Vladimir Leveinstein in 1968.

Both encoding and decoding are multi-step processes (Salomon, 2007).

The Levenstein code for zero is a single 0. For the positive number code n, here are the encoding steps.

1. Set the first number of C to 1. Place the code-so-far in the empty string.

2. Take the binary value of n without the leading 1 and add it to the code so far

3. This.

4. Denote M as the number of bits added in stage 2.

5. If M ≠ 0, add 1 to C and do step 2 again, but with the value M instead of n.

6. If M = 0, add 1 followed by 0 in C to the code-so-far and stop.

7. For the example case, we assume n = 18. The binary value of 18 is 10010, we take 0010 and add it after 1. Add 1 to

the code, then count the number of characters in 0010, we get 4. Add back 1, Take the value 00, add behind that

addition. Repeat these steps until we get the value M = 0, then add 10. So 18 in the Levenstein code is

11110|0|00|0010.

Table 1. Levenstein Code Table (Salomon, 2007)

N Kode Levenstein N Kode Leveinstein

0 0 9 11100 1 001

1 10 10 11100 1 010

2 110 0 11 11100 1 011

3 110 1 12 11100 1 100

4 1110 0 00 13 11100 1 101

5 1110 0 01 14 11100 1 110

6 1110 0 10 15 11100 1 111

7 1110 0 11 16 111100 1 00 0000

8 11100 1 000 17 111100 1 00 0001

Decoding is done as follows:

1. Set C with the number of consecutive numbers 1 before the first number 0.

2. If C = 0, the decoded value is zero, stop.

3. Set N = 1, and repeat step 4 (C-1) times.

4. Read N bits, add 1, and assign the resulting bitstring to N (thus removing the previous value from N). The string

assigned to N in the last iteration is its decoded value.

For example, let's take the Levenstein code 11110|0|00|0010. The decoder first counts the number of 1s before 0s and

finds that there are 4 iterations. Then read 0 and add the leading 1 to 10. Decode 10 and find that the number of bits in

the binary representation of the codeword length is equal to 2. Then read 00 and add the leading 1 to 100. This means that

the length of the binary representation is equal to 4. Finally, read 0111 , add prefix 1 and decode 10111, which is 23

3. RESULT AND DISCUSSION

3.1. Implementation of the Sequitur Algorithm

Before carrying out the compression process using the sequitur algorithm, the author determines the string that will

be used. Suppose a text file contains the string “CHILDREN_MAIN_GAME”. It must be known in advance that the

string "ANAK-ANAK_MAIN_PERMAINAN" consists of 24 characters, where 1 character is equal to (=) 1 bit and 1

bit is equal to (=) 8 bits, then the total string before compression is 24 bits or equal to (=) 192 bits.

To find out the size of the string "ANAK-ANAK_MAIN_ GAMES", you can see the table as follows:

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 26
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

Table 2 String Size Before Compression

Karakter Frekuensi ASCII Desimal ASCII

Binary

Bit Bit x

Frekuensi

A 7 65 01000001 8 56

N 5 78 01001110 8 40

Sp (spasi) 3 32 00100000 8 24

K 2 75 01001110 8 16

M 2 77 01001011 8 16

I 2 73 01001001 8 16

P 1 80 01000101 8 8

E 1 69 01000101 8 8

R 1 82 01000111 8 8

Jumlah bit x frekuensi 192

A text file that has known strings and the resulting number of each frequency of occurrence, then the next process is the

compression process using the sequitur algorithm.

In the sequitur algorithm, the existing string is then processed to get a duplicate string or in other words 2 characters or 2

letters that appear more than once. Then the character will be checked, if a pair appears more than once then the pair is

changed to a non-terminal symbol.

Initial string : CHILDREN_MAIN_GAME

String to lowercase : kids_play_games

3.2 Sequitur Algorithm Process

 As explained above, a string that has been converted to lowercase will then be checked to see if any pairs appear

more than once. From the string "anak_anak_main_permainan", the character pair "an" appears three times. So according

to the principle of performance of this sequitur algorithm, the character pair "an" will be changed to a non-terminal

symbol, namely to "A". So a new string is formed as "Aak_Aak_main_permainA".

Then, from the new string, it will be checked again to see if there are pairs of characters that appear more than once. After

checking again, it turned out that the character pair "Aa" appeared more than once, namely twice. Therefore, the character

pair "Aa" will be changed to a non-terminal symbol, namely the symbol "B". So that it forms the string "Bk_Bk_main_

permainA". In the new string, it will be checked to see if any pair of characters appears more than once. After checking

again, it turned out that the character pair "Bk" appeared more than once, namely twice. Therefore, the character pair

"Bk" will be changed to a non-terminal symbol, namely the symbol "C". So that it forms the string "C-C_main permainA".

Then, from the new string, it will be checked again to see if there are pairs of characters that appear more than once. After

checking again, it turned out that the character pair "ma" appeared more than once, namely twice. Therefore, the character

pair "ma" will be changed to a non-terminal symbol, namely the symbol "D". So that it forms the string "C-C_Din_

perDinA". In the new string, it will be checked to see if any pair of characters appears more than once. After checking

again, it turned out that the character pair "Di" appeared more than once, namely twice. Therefore, the character pair "Di"

will be changed to a non-terminal symbol, namely the symbol "E". So that it forms the string "C-C_En perEnA".

In the new string, it will be checked to see if any pair of characters appears more than once. After checking again, it turned

out that the character pair "En" appeared more than once, namely twice. Therefore, the character pair "En" will be changed

to a non-terminal symbol, namely the symbol "F". So that it forms the string "C-C_F_perFA".

The overall process of this sequitur algorithm can be contained in table form which is presented as follows:

Table 3. Sequitur Algorithm Process

Process

Strings Duplicate

Diagram on

String

Symbol

Formation

(Non-

Terminal)

Rule Resulting

String

Delete Rule

1 anak- anak main

permainan

An A

A = an Aak Aak

main

permainA

-

2 Aak Aak main

permainA

An

Aa

A

B

A = an

B = Aa

Bk Bk main

permainA

-

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 27
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

3 Bk Bk main permainA An

Aa

Bk

A

B

C

A = an

B = Aa

C =Bk

C C main

permainA

-

Table 4. Sequitur Algorithm ProcessContinued

Process

Strings Duplicate Diagram

on String

Symbol Formation

(Non-Terminal)

Rule Resulting

String

Delete

Rule

1 C C main

permainA

An

Aa

Bk

Ma

A

B

C

D

A = an

B = Aa

C = Bk

D = ma

 C C Din

perDinA

-

2 C C Din

perDinA

An

Aa

Bk

ma

Di

A

B

C

D

E

A = an

B = Aa

C = Bk

D = ma

E = Di

C C En perEnA

-

3 C C En

perEnA

An

Aa

Bk

Ma

Di

En

A

B

C

D

E

F

A = an

B = Aa

C = Bk

D = ma

E= Di

F =En

 C C F perFA

-

4 C C F

perFA

An

Aa

Bk

Ma

Di

En

A

B

C

D

E

F

A = an

B = Aa

C = Bk

D = ma

E= Di

F =En

-

-

3.3 Dictionary

 In this case, the dictionary functions as a replacement for a temporary database, which means that in the process this

dictionary will store the results of processes that have been carried out in the previous process to produce return data in

the decompression process later. The dictionary of the processes that have been carried out can be seen in the following

table:

Table 5. Dictionary

Proses Aturan Rule

1. A = an

2. A = an

B = Aa

3. A = an

B = Aa

C = Bk

4. A = an

B = Aa

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 28
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

C = Bk

D =ma

5. A = an

B = Aa

C = Bk

D = ma

E = Di

6 A = an

B = Aa

C = Bk

D = ma

E = Di

F = En

3.4. Sequitur Algorithm Decompression

 This decompression process aims to make the string that has been compressed return to its original state before being

compressed. Therefore, every compression process is always accompanied by decompression. From this statement, the

author will explain how to decompress the sequitur algorithm with previously processed strings.

It is known that the string that has been compressed is the string "C-C_F_perFA". In the sequitur algorithm, this algorithm

process has rules where in these rules there are symbols A, B, C, D. E, and F. Each symbol has a pair of repeated

characters.

For more clarity on the decompression algorithm sequitur can be seen in the following table:

Table 6 Sequitur Decompression Process

Process

Compression

Strings

Rules

Rule Description

Strings After

Decompression

1

C-C_F_perFA

A= an

Simbol “A” diganti dengan pasangan

karakter “an”

Anak-anak _F_perFA

2

Anak-anak

_F_perFA

B = Aa

Simbol “B” diganti dengan rule “Aa”

 Aak-aak _F_perFA

3

Aak-aak

_F_perFA

C = Bk

Simbol “C” diganti dengan rule “Bk”

Bk-Bk _F_perFA

4

C-C

_main_permainA

D=ma

Simbol “D” diganti dengan rule “ma” C-C_Din_perDinA

5

C-C

_Din_perDinA

E = Di

Simbol “E” diganti dengan rule “Di” C-C _En_perEnA

6

C-C _En_perEnA

F= En

Simbol “F” memiliki rule “En”.

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 29
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

 anak- anak main

permainan

3.5. Levenstein Algorithm Compression

 After carrying out the compression process using the sequitur algorithm, the next process is calculating the total bit

string that has been processed using the Levenstein algorithm.

a. Bit calculation with the Levenstein algorithm can be seen as follows:

Table 7. Compression process with the Levenstein algorithm

Character Frequency Levenstein

Code

Bit Bit * Frequency

Sp (spasi) 2 0 1 2

C 2 10 2 4

F 2 1100 4 8

- 1 1101 4 4

A 1 1110000 7 7

P 1 1110001 7 7

e 1 1110010 7 7

R 1 1110011 7 7

Jumlah Bit x Frekuensi 46 bit

After knowing the compression results, the compression results can be measured or calculated as follows:

𝐶𝑟 = 100% −
𝑢𝑘𝑢𝑟𝑎𝑛 𝑏𝑖𝑡 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡𝑒𝑙𝑎ℎ 𝑑𝑖𝑘𝑜𝑚𝑝𝑟𝑒𝑠𝑖

𝑢𝑘𝑢𝑟𝑎𝑛 𝑏𝑖𝑡 𝑑𝑎𝑡𝑎 𝑠𝑒𝑏𝑒𝑙𝑢𝑚 𝑑𝑖𝑘𝑜𝑚𝑝𝑟𝑒𝑠𝑖
× 100%

𝐶𝑟 = 100% −
46 𝑏𝑖𝑡

192 𝑏𝑖𝑡
× 100%

𝐶𝑟 = 100% − 76%

𝐶𝑟 = 24%

From the results of the compression ratio calculation, it turns out that the compression process using the sequitur algorithm

is 24% more efficient on the capacity available.

Combining the resulting Levenstein code bit strings, the following binary is obtained:

10110110 01100011 10001111 00101110 01111001 110000 (total number is 46 bits).

Check the length of the bit string.

If the remainder for the string length of 8 bits is 0, then add 8 "0" bits. Express it with the final bit. Meanwhile, if the

remainder for the length of the bit string to 8 is n(1,2,3,4,5,6,7), then add 0 as much as 7 - n followed by the number "1"

at the end of the bit string, denote it by L, denote it by bit. end. Because the number of bit strings that have been compressed

is 46 bits and is not divisible by 7, the calculation is as follows:

N= (Number of compressed string bits)/7

𝑁 =
𝐽𝑢𝑚𝑙𝑎ℎ 𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔 ℎ𝑎𝑠𝑖𝑙 𝑘𝑜𝑚𝑝𝑟𝑒𝑠𝑖

7

=
46

7

= 6

Based on the results of the operation above, it is concluded that the remainder for the 46 bit string is 6, so n = 6.

To find padding, look as follows:

= 7 – n + “1”

= 7 – 6 + “1” = 1

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 30
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

then the binary compression result above will be added with 1 bit "0" followed by bit "1", so that the bit padding is

11000001

Looking for Flagbits

To find flagbits, use the formula 9 - 6 where n is the number of padding bits so that it becomes 9 – 6 = 9 – 6 = 3, represented

in binary form 00000011.

This flagbits value is converted into binary with 8 bit representation to become 00000011. This flagbits value will be

added after the padding bits that were obtained previously.

The final result of the compression process (in binary form) is:

10110110 01100011 10001111 00101110 01111001 11000001 00000011

Grouping compressed binaries

The binary resulting from compression above will be grouped into 8 bits per group, so that characters can be produced

from each group of bits, the results are shown in table 3.5.

Table 8. Grouping of compressed binaries

Biner Desimal Karakter

10110110 182 ¶

01100011 99 C

10001111 143

00101110 46 .

01111001 121 Á

11000001 193 Á

00000011 3

Jumlah Bit Hasil Kompresi 56 bit

h. Based on the compression results that have been obtained, the parameter values of compression ratio, compression

ratio and redurancy can be calculated:

𝑅𝑐 =
𝑑𝑎𝑡𝑎 𝑏𝑖𝑡 𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑑𝑎𝑡𝑎 𝑏𝑖𝑡 𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
=

192 𝑏𝑖𝑡

56 𝑏𝑖𝑡
= 3,42

𝐶𝑟 =
𝑢𝑑𝑎𝑡𝑎 𝑏𝑖𝑡 𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑑𝑎𝑡𝑎 𝑏𝑖𝑡 𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
× 100% =

56 𝑏𝑖𝑡

192 𝑏𝑖𝑡
× 100%

 = 29%

𝑅𝑑 = 100% − 𝐶𝑟

 = 100% − 29% = 71%

Based on calculations using compression parameters for the contents of the material file above, the Rc result above before

compression is 13.42 bits times the size of the data after compression. Meanwhile, the Cr result above means that after

compression the data size is 29% of the data before compression and Rd is 72%, which is data that has been compressed

or missing data.

3.6. Levenstein Decompression Process

After carrying out the compression process using the sequitur algorithm, the next process is calculating the total bit string

that has been processed using the Levenstein algorithm. The binary material that has been compressed is:

10110110 01100011 10001111 00101110 01111001 11000001 00000011

The next step takes the last 8 bits of the string to be decompressed, represented in decimal form, namely 3, expressed as

n, then uses the 7+3 formula to return the bits to their original state, namely 7+n = 7+3 = 10.

Then remove 10bits from the end of the bit string so it becomes

10110110 01100011 10001111 00101110 01111001 110000

Next, check the first bit, if it is in the Levenstein code table in the Levenstein code dictionary in table 3, then change the

string accordingly.

Table 9. Bit Checking and Decompression Process

Index Levenstein Value Description Character

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 31
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

1 1 There isn't any

2 10 There is C

3 1 There isn't any

4 11 There isn't any

5 110 There isn't any

6 1101 There is -

7 1 There isn't any

8 10 There is C

9 0 There isn't any Spasi

10 11 There isn't any

11 111 There isn't any

12 11100 There is F

13 11101 There isn't any

14 111011 There isn't any

15 1110110 There isn't any

Table 10. Bit Checking and Advanced Decompression Process

Index Levenstein Value Description Character

16 11101100 There isn't any

17 0 There is Spasi

18 11 There isn't any

19 111 There isn't any

20 1110 There isn't any

21 1110001 There is P

22 1110010 There is E

23 1110011 There is R

24 1 There isn't any

25 11 There isn't any

26 111 There isn't any

27 1100 There is F

28 11100 There isn't any

29 111000 There isn't any

30 1110000 There is A

The checking process as in table 3.6 above is carried out until the initial string "C-C_F_perFA" is found

4. CONCLUSION

The conclusions that can be drawn after designing a text file compression application by applying the Sequitur

algorithm are:

1. Applying the sequitur algorithm to carry out the encryption process for message characters to produce ciphertext.

Carry out the process of grouping the characters into several columns, where each column will contain three message

characters. Perform matrix multiplication between message characters and the key used. The values resulting from

the matrix multiplication process will be modulated, so that the final result of the modulation process is a ciphertext.

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

Management of Information System Journal
Vol 2, No 3, Juli 2024, Hal. 23 - 32
ISSN: 2964-9455 (media online)
DOI: 10.47065/mis.v2i3.1914
https://journal.fkpt.org/index.php/MIS

Copyright © 2024 Muhammad Hasan, Page 32
Jurnal MIS is licensed under a Creative Commons Attribution 4.0 International License

2. Application of the Levenstein algorithm to compress text files containing previously encrypted text. The data is first

analyzed by creating a table of the frequency of occurrence of each symbol. The frequency table has attributes in the

form of ASCII symbols and frequencies. The data that has the smallest frequency of appearance is selected as the

first node in this algorithm, from these two nodes a parent node is created which records the frequency of the first

two nodes.

3. Reducing the size of the text file using the Sequitur and Levenstein algorithms, which can be done using compression

techniques, where each character (plaintext) will be encrypted. The encryption process is the change of each message

character into another form whose meaning will no longer be understood as a result of this change (ciphertext).

4. Designing an application using Visual Basic 2008 for placing inscribed text files is a step that has a positive impact

on securing text files as well as saving data storage capacity, where the positive impact is in the form of convenience

and time effectiveness.

5. used to perform encoding processing and compression of abstracted text files.

REFERENCES

[1] (2010). In E. Jubilee, Rahasia Manajemen File (p. 144). Indonesia: Elex Media Komputindo.

[2] Marimin. (2004). Teknik Dan Aplikasi Pengambilan Keputusan Kriteria Majemuk. Jakarta,

Indonesia: Grasindo.

[3] (2016). In M. Muslihudin, Oktafianto, & A. Pramesta (Ed.), Analisa Dan Perancangan Sistem

Informasi Menggunakan Model Terstruktur Dan UML. Yogyakarta, Indonesia: Andi.

[4] (2015). In H. Nugroho, Matematika Diskrit Dan Implementasinya Dalam Dunia Teknologi

Informasi. Yogyakarta, Indonesia: deepublish.

[5] Nurdam, N. (2014). Sequence Diagram Sebagai Perkakas Perancangan Antarmuka Pemakai.

Ultimatics , VI (2085-4552), 21-25.

[6] Putra, D. (2010). In D. Putra, & Westriningsih (Ed.), Pengolahan Citra Digital. Yogyakarta,

Indonesia: Andi.

[7] (2010). In D. Salomon, & G. Motta, Handbook Of Data Compression. New York, Amerika:

Springer London Dordrecht.

[8] Sulistyorini, P. (2009). Pemodelan Visual Dengan Menggunakan UML Dan Rational Noise.

Jurnal Tekhnik Informasi Dinamika , XIV (0854-9524), 23-29.

[9] Suryasari, Callista, A., & Sari, J. (2012). Rancangan Aplikasi Customer Service Pada PT. Lancar

Makmur Besama. Jurnal Sistem Informasi (JSI) , IV (2085-1588), 468-476.

[10] (2004). In F. Wahid, Dasar-Dasar Algoritma Dan Pemrograman. Yogyakarta, Indonesia:

Andi.

[11] Wedianto, A., Sari, H. L., & H, Y. S. (2016). Analisa Perbandingan Metode Filter Gaussian,

Mean Dan Median Terhadap Reduksi Noise. Media Infotama , XII, 21-30.

[12] Wibowo, H. R. (2014). Buku Pintar VB.Net. Jakarta, Indonesia: Elex Media Komputindo.

https://ejurnal.seminar-id.com/index.php/ekuitas
https://creativecommons.org/licenses/by/4.0/

