Implementasi Pengelompokan Persediaan Sepeda Motor Menggunakan Metode Clustering K-Means

  • Zulfi Azhar * Mail Sistem Informasi, Universitas Budi Darma, Medan, Indonesia
  • Chairani Wulandari Program Studi Sistem Informasi, STMIK Royal Kisaran, Indonesia
  • Zulia Hanum Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
  • Wan Arfansyah Putra Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
  • Yenny Puspita Saragih UPT SPF SMP Negeri 2 Tanjung Morawa, Indonesia
Keywords: K-Means Clustering; city; cluster; motorbike; sales

Abstract

Designing an annual marketing strategy for motorbike inventory in each city where previous data already exists but sometimes has never been reviewed. Decision making in determining the number of Honda brands that consumers are interested in per year needs to be reviewed in each city. CV. Karya Utama Kisaran, a company engaged in marketing motorbikes which is experiencing an increasingly competitive level of business competition. This requires determining motorbike inventory which can increase motorbike sales volume by choosing the right dealer. Motorbike inventory is one of the things that needs to be done in designing marketing strategies in several cities. In this analysis process, it is carried out using data mining with clustering techniques which use non-hierarchical methods in non-hierarchical grouping, one single data in a group, or more small groups that can combine into a large group. The aim of the research is to determine the similarity in characteristics between the data in inventory transaction database, in order to form groups of marketing locations. The final results of the research carried out produced 2 clusters where cluster 1 was City 1, 2, 4, 6, 7, 8,9,10, 11,12 and cluster 2, City 3 and 5 from a total of 12 cities, by showing that cluster 2 has higher motorbike inventory and marketing than cluster 1.

References

R. Risnawati, W. Ristamaya, and E. Elfitriani, “Penerapan Data mining untuk Memprediksi Penjualan Sepeda Motor Pada PT Mitra Pinasthika Mustika di Periode yang Akan Datang Menggunakan Metode Regresi …,” J. Cyber Tech, no. x, 2022.

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

R. Mauliadi, “Data Mining Menggunakan Algoritma K-Means Clustering dalam Analisis Tingkat Potongan Harga Terhadap Harga Jual Sepeda Motor Honda,” J. Inform. Ekon. Bisnis, vol. 4, pp. 7–9, 2022, doi: 10.37034/infeb.v4i4.156.

I. Inayah Mohamad, I. A. Salihi, and K. C. Pelangi, “Penerapan Metode K-Means Untuk Clustering Penjualan Suku Cadang Kendaraan Viar (Studi Kasus: CV. Gotama Viar Gorontalo),” J. Ilm. Ilmu Komput. Banthayo Lo Komput., vol. 2, no. 1, pp. 10–17, 2023, doi: 10.37195/balok.v1i2.399.

S. Natalia, B. Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” vol. 1, pp. 31–40, 2022.

M. A. Rheza and F. Metandi, “Implementasi Metode K-Means Clustering Untuk Penentuan Jenis Komentar Pada Tweet Pssi,” Just TI (Jurnal Sains Terap. Teknol. Informasi), vol. 12, no. 2, p. 73, 2020, doi: 10.46964/justti.v12i2.363.

Y. Kusnadi and M. S. Putri, “Clustering Menggunakan Metode K-Means Untuk Menentukan Prioritas Penerima Bantuan Bedah Rumah (Studi Kasus : Desa Ciomas Bogor),” J. Teknol. Inform. dan Komput., vol. 7, no. 1, pp. 17–24, 2021, doi: 10.37012/jtik.v7i1.498.

M. N. V. Waworuntu and M. Faisal Amin, “Penerapan Metode K-Means Untuk Pemetaan Calon Penerima Jamkesda,” Klik - Kumpul. J. Ilmu Komput., vol. 5, no. 2, p. 190, 2018, doi: 10.20527/klik.v5i2.157.

S. Oktarian, S. Defit, and Sumijan, “Clustering Students’ Interest Determination in School Selection Using the K-Means Clustering Algorithm Method,” J. Inf. dan Teknol., vol. 2, pp. 68–75, 2020, doi: 10.37034/jidt.v2i3.65.

V. Novita Sari, Y. Yupianti, and D. Maharani, “Penerapan Metode K-Means Clustering Dalam Menentukan Predikat Kelulusan Mahasiswa Untuk Menganalisa Kualitas Lulusan,” Jurteksi, vol. 4, no. 2, pp. 133–140, 2018, doi: 10.33330/jurteksi.v4i2.53.

P. Alam Jusia, F. Muhammad Irfan, and S. Dinamika Bangsa Jambi Jl Jend Sudirman Thehok Jambi, “Clustering Data Untuk Rekomendasi Penentuan Jurusan Perguruan Tinggi Menggunakan Metode K-Means,” J. IKRA-ITH Inform., vol. 3, no. 3, p. 75, 2019.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.

S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020, doi: 10.35760/tr.2020.v25i1.2677.

S. Suhartini and R. Yuliani, “Penerapan Data Mining untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K-Means di Dusun Bagik Endep Sukamulia Timur,” Infotek J. Inform. dan Teknol., vol. 4, no. 1, pp. 39–50, 2021, doi: 10.29408/jit.v4i1.2986.

F. W. Fibriany, “Penerapan Metode K-Means Dalam Ujian Nasional,” vol. 6, no. 1, pp. 26–31, 2022, doi: 10.52362/jisamar.v6i1.670.

A. Almayda and S. Saepudin, “Penerapan Data Mining K-Means Clustering Untuk Menglelompokkan Berbagai Jenis Merek Smartphone,” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., pp. 241–249, 2021.

M. S. Nawawi, F. Sembiring, and A. Erfina, “Implementasi Algoritma K-Means Clustering Menggunakan Orange Untuk Penentuan Produk Busana Muslim Terlaris,” … Teknol. Inf. dan …, pp. 789–797, 2021, [Online]. Available: http://prosiding.unipma.ac.id/index.php/SENATIK/article/view/1837%0Ahttp://prosiding.unipma.ac.id/index.php/SENATIK/article/viewFile/1837/1723

Z. Azhar, M. A. Sembiring, Z. Hanum, and Y. P. Saragih, “Implementation of RASTRA rice assistance groups using k-means clustering method,” AIP Conf. Proc., vol. 3024, no. 1, 2024, doi: 10.1063/5.0204474.

Dimensions Badge
Published
2024-07-31
Section
Articles